4.7 Article

Preparation of silver nanoparticles by solid-state redox route from hydroxyethyl cellulose for antibacterial strain sensor hydrogel

期刊

CARBOHYDRATE POLYMERS
卷 257, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2021.117665

关键词

Silver nanoparticles; Solid-state reduction; Hydroxyethyl cellulose; Antibacterial strain sensor

资金

  1. National Natural Science Foundation of China [51773124, 51403132, 52073183]
  2. Sichuan Ministry of Science, Technology Project [2018GZ0322]

向作者/读者索取更多资源

This paper presents a novel method for preparing antibacterial and flexible strain sensors using silver nanoparticles, by compounding them into a chemically cross-linked hydrogel. The mechanical properties of the composite hydrogel were significantly improved, and it was successfully fabricated using a specific initiator.
As a smart wearable sensor device, the mildew of the biocompatible hydrogel limits its application. In this paper, silver nanoparticles were prepared by solid-state reduction of hydroxyethyl cellulose and compounded into a chemically cross-linked hydrogel as an antibacterial, flexible strain sensor. Because the high surface energy of silver nanoparticles can quench free radicals, we designed three initiators to synthesize hydrogels: ammonium persulfate (APS), 2,2'-Azobis(2-methylpropionitrile) (AIBN) and 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA). Impressively, silver nanoparticles composite hydrogel could only be successfully fabricated and triggered by the AIBN. The mechanical property of the composite hydrogel (0.12 MPa at 704.33 % strain) was significantly improved because of dynamic crosslinking point by HEC. Finally, the composite hydrogels are applied to the field of antibacterial strain sensor and the highest Gauge Factor (GF) reached 4.07. This article proposes a novel, green and simple strategy for preparing silver nanoparticles and compounding them into a hydrogel system for antibacterial strain sensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据