4.7 Article

Temporal transcriptome profiling of developing seeds reveals candidate genes involved in oil accumulation in safflower (Carthamus tinctorius L.)

期刊

BMC PLANT BIOLOGY
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-021-02964-0

关键词

Transcriptome; Developing safflower seeds; Molecular mechanisms; Safflower

资金

  1. National Natural Science Foundation of China [81274020]
  2. Talent Introduction Project of Guizhou University [17]

向作者/读者索取更多资源

The research identified molecular mechanisms involved in lipid metabolism during different developmental stages of safflower seeds through temporal transcriptome sequencing. Key gene expression changes were found and transcription factors regulating these genes were identified.
Background The investigation of molecular mechanisms involved in lipid metabolism plays a critical role for the genetic engineering of safflower (Carthamus tinctorius L.) to increase the oil accumulation level or to change the oil composition. Although transcript sequences are currently available for the leaves and flowers of safflower, a wide range scan of temporal transcripts at different stages of seed development has not been conducted for safflower. Results In this study, temporal transcriptome sequencing was executed at 10, 14, 18, and 22 days after flowering (DAF) to uncover the molecular networks concerned in the biosynthesis of unsaturated fatty acids (USFAs). The results revealed that the biosynthesis of fatty acids is a dominant cellular process from 10 to 14 DAF, while degradation mainly happens after 18 DAF. Significant expression changes of two genes, stearoyl-[acyl-carrier-protein] 9-desaturase gene (SAD) from 10 to 14 DAF and oleate desaturase (FAD2-1) from 14 to 18 DAF, were detected at the transcriptomic levels, and the temporal expression patterns revealed by the transcriptomic analysis were confirmed using quantitative real-time PCR experiments. In addition, 13 candidate transcription factors (TFs) involved in regulating the expression level of the FAD2-1 gene were identified. Conclusions These results create a link between fatty acid biosynthesis and gene expression at different developmental stages of the seeds, provide insight into the underlying lipid metabolism, and meanwhile lay an important foundation for the genetic engineering of safflower varieties. We have identified novel candidate genes, including TFs, that are worthy of further exploration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据