4.7 Article

Analysis of temporal gene regulation of Listeria monocytogenes revealed distinct regulatory response modes after exposure to high pressure processing

期刊

BMC GENOMICS
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-021-07461-0

关键词

Gene regulatory network; Listeria monocytogenes; High pressure processing; Network component analysis; Transcription factor; Target gene

资金

  1. ERA-IB2 consortium SafeFood by the Research Council of Norway [ERA712IB-16-247 014, 263499]
  2. Academy of Finland [311717, 307856]
  3. Executive Agency for Higher Education, Research, Development and Innovation Funding in Romania [15/2017]
  4. German Ministry for Education and Research [031B0268]
  5. Academy of Finland (AKA) [307856, 311717, 307856, 311717] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

The pathogen Listeria (L.) monocytogenes exhibits different gene regulation modes in response to high pressure processing, including survival mode, repair mode, and re-growth mode. This allows for the timely activation of transcription factors associated with immediate stress response, followed by repair and re-growth to survive and recover from extreme conditions. The findings provide insights for potential design of specific strategies to target genes or mechanisms to prevent L. monocytogenes recovery during food storage under high pressure conditions.
Background The pathogen Listeria (L.) monocytogenes is known to survive heat, cold, high pressure, and other extreme conditions. Although the response of this pathogen to pH, osmotic, temperature, and oxidative stress has been studied extensively, its reaction to the stress produced by high pressure processing HPP (which is a preservation method in the food industry), and the activated gene regulatory network (GRN) in response to this stress is still largely unknown. Results We used RNA sequencing transcriptome data of L. monocytogenes (ScottA) treated at 400 MPa and 8(circle)C, for 8 min and combined it with current information in the literature to create a transcriptional regulation database, depicting the relationship between transcription factors (TFs) and their target genes (TGs) in L. monocytogenes. We then applied network component analysis (NCA), a matrix decomposition method, to reconstruct the activities of the TFs over time. According to our findings, L. monocytogenes responded to the stress applied during HPP by three statistically different gene regulation modes: survival mode during the first 10 min post-treatment, repair mode during 1 h post-treatment, and re-growth mode beyond 6 h after HPP. We identified the TFs and their TGs that were responsible for each of the modes. We developed a plausible model that could explain the regulatory mechanism that L. monocytogenes activated through the well-studied CIRCE operon via the regulator HrcA during the survival mode. Conclusions Our findings suggest that the timely activation of TFs associated with an immediate stress response, followed by the expression of genes for repair purposes, and then re-growth and metabolism, could be a strategy of L. monocytogenes to survive and recover extreme HPP conditions. We believe that our results give a better understanding of L. monocytogenes behavior after exposure to high pressure that may lead to the design of a specific knock-out process to target the genes or mechanisms. The results can help the food industry select appropriate HPP conditions to prevent L. monocytogenes recovery during food storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据