4.6 Article

Combined local delivery of tacrolimus and stem cells in hydrogel for enhancing peripheral nerve regeneration

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 118, 期 7, 页码 2804-2814

出版社

WILEY
DOI: 10.1002/bit.27799

关键词

drug delivery; nerve injury; stem cells; tacrolimus; tissue engineering

资金

  1. National Cancer Institute [P30 CA015083]

向作者/读者索取更多资源

The study explored the potential of using tacrolimus and mesenchymal stem cells combined with a fibrin gel-based drug delivery system to enhance peripheral nerve regeneration. The results showed that the combined delivery method did not result in cytotoxic effects and could be beneficial for promoting peripheral nerve regeneration.
The application of scaffold-based stem cell transplantation to enhance peripheral nerve regeneration has great potential. Recently, the neuroregenerative potential of tacrolimus (a U.S. Food and Drug Administration-approved immunosuppressant) has been explored. In this study, a fibrin gel-based drug delivery system for sustained and localized tacrolimus release was combined with rat adipose-derived mesenchymal stem cells (MSC) to investigate cell viability in vitro. Tacrolimus was encapsulated in poly(lactic-co-glycolic) acid (PLGA) microspheres and suspended in fibrin hydrogel, using concentrations of 0.01 and 100 ng/ml. Drug release over time was measured. MSCs were cultured in drug-released media collected at various days to mimic systemic exposure. MSCs were combined with (i) hydrogel only, (ii) empty PLGA microspheres in the hydrogel, (iii) 0.01, and (iv) 100 ng/ml of tacrolimus PLGA microspheres in the hydrogel. Stem cell presence and viability were evaluated. A sustained release of 100 ng/ml tacrolimus microspheres was observed for up to 35 days. Stem cell presence was confirmed and cell viability was observed up to 7 days, with no significant differences between groups. This study suggests that combined delivery of 100 ng/ml tacrolimus and MSCs in fibrin hydrogel does not result in cytotoxic effects and could be used to enhance peripheral nerve regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据