4.8 Article

High-performance porphyrin-like graphene quantum dots for immuno-sensing of Salmonella typhi

期刊

BIOSENSORS & BIOELECTRONICS
卷 188, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2021.113334

关键词

Mechanochemical mixing; Iron-nitrogen doping; Graphene quantum dots; Fluorescence resonance energy transfer; Paramagnetic; Vi antigen

资金

  1. Research Council of the University of Tehran

向作者/读者索取更多资源

The study introduces novel iron porphyrin bio-mimicked graphene quantum dots (Fe-N-GQDs) as a paramagnetic and fluorescent label with exceptional optical properties. The Fe-N-GQDs with well-dispersed particles of about 2.5 nm diameter were prepared through solvothermal treatment of Fe-N doped graphene sheets. Bioconjugated Fe-N-GQDs serve as donors in a prominent fluorescence resonance energy transfer system, showing enhanced photoluminescence quantum yield and strong paramagnetic behavior.
The extraordinary optical properties of porphyrins have inspired their applications in various fields. Herein, we introduce iron porphyrin bio-mimicked graphene quantum dots (Fe-N-GQDs) as a novel paramagnetic and fluorescent label. The Fe-N-GQD was prepared by the mechanochemical mixing of Fe, N, and C sources followed by pyrolysis at high-temperature and next, the solvothermal treatment was performed. The Fe-N sites in graphene matrix, the structural alterations during the solvothermal treatment, the optical properties, and paramagnetic behaviour were studied using FTIR, Raman and X-ray spectroscopies, and Vibrating sample magnetometer. The structural studies revealed that under solvothermal condition, Fe-N doped graphene sheets cut into ultra-small Fe-N-GQDs containing well-dispersed particles with an average diameter of about 2.5 nm. As a result of Fe-N doping, the photoluminescence quantum yield was enhanced to 86% and strong paramagnetic behaviour was observed. Due to the rich oxygen-containing groups at Fe-N-GQDs surface, it has proper sites for bio-conjugation. The bioconjugated Fe-N-GQDs serve as donors in a prominent fluorescence resonance energy transfer system, while graphene oxide acts as an acceptor. The proposed immunosensor was successfully applied for the detection of Salmonella Typhi Vi antigen in real human serum in the concentration range from 1 pg/mL to 1 mu g/mL with the detection limit of 1 pg/mL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据