4.0 Article

Effect of miR-30a-5p on Apoptosis, Colonization, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells

期刊

BIOPRESERVATION AND BIOBANKING
卷 19, 期 4, 页码 258-268

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/bio.2020.0121

关键词

spermatogonial stem cells; cryopreservation; miR-30a-5p; ROS; apoptosis; antioxidant

资金

  1. Tehran University of Medical Sciences [40905]

向作者/读者索取更多资源

The study showed that transfection of SSCs with miR-30a-5p mimics before freezing-thawing process can significantly increase cell viability, number, and diameter of colonies, decrease ROS production and MDA levels, increase SOD levels, and decrease apoptosis.
Cryopreservation of spermatogonial stem cells (SSCs) is a useful method for fertility preservation in preadolescent children suffering from cancer. However, SSCs may become damaged during cryopreservation due to the generation of reactive oxygen species (ROS). For this reason, various antioxidant agents have been used to protect SSCs from cryopreservation-induced damages. Recently, it has been reported that miR-30a-5p has antiapoptotic and antioxidant activity. The aim of this study was to assess the antiapoptotic and antioxidant effects of miR-30a-5p mimics in frozen-thawed SSCs. To this end, SSCs were isolated from male BALB/C mice (3-6 days old) and cultivated for 14 days. After the detection of optimum concentration, a miR-30a-5p mimic or miR-30a-5p inhibitor with Lipofectamine was transfected into SSCs and, finally, the cell groups were frozen for 1 week. After thawing, different properties, including cell viability (using MTT), colonization of SSCs (number and diameter of colonies), ROS generation (using DCFH-DA assay), levels of malondialdehyde (MDA) and superoxide dismutase (SOD), and gene expression of Bcl-2 and BAXBax (using quantitative real-time PCR), were investigated. The transfection of SSCs with miR-30a-5p mimics before the freezing-thawing process significantly increased the viability, number, and diameter of SSCs colonies. Also, the miR-30a-5p mimic decreased the levels of ROS production and MDA, but it increased the SOD levels. Moreover, the miR-30a-5p mimic decreased BAX and increased Bcl-2 expression in frozen-thawed SSCs. The transfection of SSCs with the miR-30a-5p mimic can increase cell viability and antioxidant defense, and it can decrease apoptosis during the freezing-thawing process. If SSC is able to produce spermatozoa after the transfection of miR-30a-5p and the freezing-thawing process, it can be suggested as a promising strategy for the cryopreservation of SSCs in prepubertal boys suffering from cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据