4.8 Article

Delivery of manganese carbonyl to the tumor microenvironment using Tumor-Derived exosomes for cancer gas therapy and low dose radiotherapy

期刊

BIOMATERIALS
卷 274, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2021.120894

关键词

Manganese carbonyl; Tumor-derived exosomes; Gas therapy; Low dose radiotherapy; Tumor microenvironment

资金

  1. National Major Special Program of Scientific Instrument & Equipment Development of China [2012YQ160203]

向作者/读者索取更多资源

A novel radiosensitizer, MMV, was developed for enhancing the efficacy of tumor radiotherapy by controlled CO release in tumor, showing excellent tumor targeting and radiosensitization effects.
The development of novel radiosensitizer with high selectivity and controllability is highly desirable. CO gas could cause damage to mitochondria and thus enhance RT effect. Controlled delivery of CO in tumor is important both to achieve high-efficiency of CO gas therapy and to decrease the risk of CO poisoning. In this study, manganese carbonyl (MnCO) loaded exosome nano-vesicles (MMV) to overcome this conundrum for tumor therapy is developed. After administration, MMV showed its admirable performance in active tumor-targeting, mitochondria damage and radiosensitization therapy. These MMV nanoparticles were able to facilitate robust CO evolution and consequent ROS generation in response to X-ray irradiation both in vitro and in vivo. Significantly, MMV could facilitate a 90% inhibition effect of tumor growth under very low dose (only 2Gy) RT, which is better than high dose (6Gy) radiotherapy. Overall, this study highlights a novel and practical approach to enhancing the efficacy of tumor RT, underscoring the value of future research in the field of CO medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据