4.8 Article

Bioinspired protein corona strategy enhanced biocompatibility of Ag-Hybrid hollow Au nanoshells for surface-enhanced Raman scattering imaging and on-demand activation tumor-phototherapy

期刊

BIOMATERIALS
卷 271, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2021.120734

关键词

Hollow Au nanoshells; Bioinspired protein corona; SERS imaging; Metastatic tumor; Photothermal therapy

资金

  1. National Natural Science Foundation of China [81971667]
  2. Key Research and Development Project of Zhejiang Province [2020C03035]

向作者/读者索取更多资源

The novel hollow AgAu-DTTC-BSA nanoprobes exhibit excellent biocompatibility and photothermal effects, allowing on-demand activation at tumor sites without harming normal cells. These nanoprobes can be used for tumor diagnosis and effectively treat colorectal solid neoplasms.
Silver-based hybrid nanoprobes for surface-enhanced Raman scattering (SERS) imaging show their tremendous potential for precise biological detection and mediated phototherapy. However, the severe toxicity induced by Ag to normal mammalian cells hinders its further application. Herein, we presented a versatile bioinspired protein corona strategy through assembling bovine serum albumin (BSA) protected Raman tag DTTC-conjugated Ag-hybrid hollow Au nanoshells (hollow AgAu-DTTC-BSA), which their silver ion release and reactive oxygen species (ROS) generation are significantly suppressed, enabling no damage to normal cells and tissues, but can be reactivated on-demand under laser-irradiation at the tumor site. These nanoshells could also produce strong localized surface plasmon resonance for efficient-stable photothermal effect and enhanced SERS activity under laser irradiation, approved by both theoretical and experimental calculations. Furthermore, the biocompatible hollow AgAu-DTTC-BSA could detect both primary tumor tissues and tiny liver metastases (similar to 0.18 mm) in orthotopic/subcutaneous CT26 colon tumor-bearing mice models. We also demonstrate their excellent therapeutic efficacy for colorectal solid neoplasms by accurate SERS imaging-guided photothermal therapy, simultaneously assisted with toxic Ag ion and ROS. These results suggest that hollow AgAu-DTTC-BSA is promising imaging assisted photothermal agents for solid tumor theranostics and enhancing the potential of Ag-based nanoparticles for practical treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据