4.5 Article

High-frequency brain networks undergo modular breakdown during epileptic seizures

期刊

EPILEPSIA
卷 57, 期 7, 页码 1097-1108

出版社

WILEY
DOI: 10.1111/epi.13413

关键词

High-frequency oscillations; Epileptogenesis; Functional connectome; Cortical network

向作者/读者索取更多资源

ObjectiveCortical high-frequency oscillations (HFOs; 100-500 Hz) play a critical role in the pathogenesis of epilepsy; however, whether they represent a true epileptogenic process remains largely unknown. HFOs have been recorded in the human cortex but their network dynamics during the transitional period from interictal to ictal phase remain largely unknown. We sought to determine the high-frequency network dynamics of these oscillations in patients with epilepsy who were undergoing intracranial electroencephalographic recording for seizure localization. MethodsWe applied a graph theoretical analysis framework to high-resolution intracranial electroencephalographic recordings of 24 interictal and 24 seizure periods to identify the spatiotemporal evolution of community structure of high-frequency cortical networks at rest and during multiple seizure episodes in patients with intractable epilepsy. ResultsCortical networks at all examined frequencies showed temporally stable community architecture in all 24 interictal periods. During seizure periods, high-frequency networks showed a significant breakdown of their community structure, which was characterized by the emergence of numerous small nodal communities, not limited to seizure foci and encompassing the entire recorded network. Such network disorganization was observed on average 225 s before the electrographic seizure onset and extended on average 190 s after termination of the seizure. Gamma networks were characterized by stable community dynamics during resting and seizure periods. SignificanceOur findings suggest that the modular breakdown of high-frequency cortical networks represents a distinct functional pathology that underlies epileptogenesis and corresponds to a cortical state of highest propensity to generate seizures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据