4.3 Article

Molecular cloning and functional analysis of the thioredoxin gene SikTrxh from Saussurea involucrata

期刊

BIOLOGIA PLANTARUM
卷 65, 期 -, 页码 47-59

出版社

ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY
DOI: 10.32615/bp.2020.155

关键词

abiotic stresses; reactive oxygen species; thioredoxins; tobacco

资金

  1. Key Areas of Corps Science and Technology Reform Project [2020AB009]
  2. National GMO Major Project [2016ZX080005004-009]
  3. Key Scientific and Technological Projects for the Cultivation of New Varieties of Genetically Modified Organisms [2018ZX0800501B-005]
  4. National Natural Science Foundation of China [31360053]

向作者/读者索取更多资源

The study identified a new thioredoxin gene, SikTrxh, that plays a significant role in plant defense under abiotic stress through reducing the toxic effects of reactive oxygen species. Subcellular localization confirmed that SikTrxh is localized to the mitochondria, and transgenic plants overexpressing SikTrxh showed lower photosystem II photoinhibition and higher activities of reactive oxygen species-scavenging enzymes, indicating enhanced resistance to abiotic stresses.
Thioredoxins are oxidoreductases that help to maintain redox homeostasis in plants under abiotic stress. In this study, a new thioredoxin gene, SikTrxh, was cloned from Saussurea involucrata (Kar. & Kir.), a perennial herb that grows in the high alpine mountains of Central Asia. Bioinformatics analysis shows that the full-length cDNA of SikTrxh consisted of 565 bp with a 354-bp open reading frame and encoded a 117 amino acid protein. Using quantitative reverse transcription (RT) PCR, we found that the expression of the SikTrxh gene was induced by salt, cold, and drought stresses, suggesting that this protein played a significant role in plant defense. Subcellular localization confirmed that the protein was localized to the mitochondria. A vector carrying SikTrxh was inserted into tobacco, and successfully modified plants were identified by RT-PCR. Physiological indicators and antioxidant enzyme activities were measured under low temperature, and salt and drought stresses. Our results show that malondialdehyde content and relative electrolyte leakage increased in both wild-type and SikTrxh-overexpressing transgenic plants; however, these increases were significantly higher in the wild-type plants than in the transgenic plants. We also found that photosystem II photoinhibition was lower in the transgenic plants than in the wild-type plants, and that activities of reactive oxygen species-scavenging enzymes were higher in the transgenic plants than in the wild-type plants. We conclude that SikTrxh can reduce toxic effects of reactive oxygen species to protect the plasma membrane, thereby increasing plant resistance to abiotic stresses. Thioredoxins are oxidoreductases that help to maintain redox homeostasis in plants under abiotic stress. In this study, a new thioredoxin gene, SikTrxh, was cloned from Saussurea involucrata (Kar. & Kir.), a perennial herb that grows in the high alpine mountains of Central Asia. Bioinformatics analysis shows that the full-length cDNA of SikTrxh consisted of 565 bp with a 354-bp open reading frame and encoded a 117 amino acid protein. Using quantitative reverse transcription (RT) PCR, we found that the expression of the SikTrxh gene was induced by salt, cold, and drought stresses, suggesting that this protein played a significant role in plant defense. Subcellular localization confirmed that the protein was localized to the mitochondria. A vector carrying SikTrxh was inserted into tobacco, and successfully modified plants were identified by RT-PCR. Physiological indicators and antioxidant enzyme activities were measured under low temperature, and salt and drought stresses. Our results show that malondialdehyde content and relative electrolyte leakage increased in both wild-type and SikTrxh-overexpressing transgenic plants; however, these increases were significantly higher in the wild-type plants than in the transgenic plants. We also found that photosystem II photoinhibition was lower in the transgenic plants than in the wild-type plants, and that activities of reactive oxygen species-scavenging enzymes were higher in the transgenic plants than in the wild-type plants. We conclude that SikTrxh can reduce toxic effects of reactive oxygen species to protect the plasma membrane, thereby increasing plant resistance

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据