4.6 Article

Exploring the Origin of Thick Disks Using the NewHorizon and Galactica Simulations

期刊

出版社

IOP Publishing Ltd
DOI: 10.3847/1538-4365/abe937

关键词

-

向作者/读者索取更多资源

Through analyzing high-resolution zoom-in simulations, including 19 disk galaxies, the study found that the formation processes of the thick and thin disks are not entirely distinct, and the vertical distribution of stars is modulated by the same factors of orbital diffusion and star formation.
Ever since a thick disk was proposed to explain the vertical distribution of the Milky Way disk stars, its origin has been a recurrent question. We aim to answer this question by inspecting 19 disk galaxies with stellar mass greater than 10(10) M (circle dot) in recent cosmological high-resolution zoom-in simulations: galactica and NewHorizon. The thin and thick disks are reasonably reproduced by the simulations with scale heights and luminosity ratios as observed. We then spatially classify the thin and thick disks and find that the thick disk stars are older, metal-poorer, kinematically hotter, and higher in accreted star fraction, while both disks are dominated by the stars formed in situ. Half of the in situ stars in the thick disks are formed before the galaxies develop their disks, and the rest are formed in spatially and kinematically thinner disks and then thickened with time by heating. However, the 19 galaxies have various properties and evolutionary routes, highlighting the need for statistically large samples to draw general conclusions. We conclude from our simulations that the thin and thick disk components are not entirely distinct in terms of formation processes but rather markers of the evolution of galactic disks. Moreover, as the combined result of the thickening of the existing disk stars and the continued formation of young thin disk stars, the vertical distribution of stars does not change much after the disks settle, pointing to the modulation of both orbital diffusion and star formation by the same confounding factor: the proximity of galaxies to marginal stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据