4.6 Article

Polarimetric Properties of Event Horizon Telescope Targets from ALMA

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 910, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.3847/2041-8213/abee6a

关键词

Magnetic fields; Relativistic jets; Active galactic nuclei; Radio jets; Polarimetry; Interferometry; Long baseline interferometry; Galactic center; Supermassive black holes; Blazars; Radio galaxies; Quasars

资金

  1. Academy of Finland [274477, 284495, 312496, 315721]
  2. European Commission Framework Programme [731016]
  3. Alexander von Humboldt Stiftung
  4. Alfred P. Sloan Research Fellowship
  5. European ALMA Regional Centre node in the Netherlands
  6. NL astronomy research network NOVA
  7. Radboud University
  8. black hole Initiative at Harvard University from the John Templeton Foundation [60477]
  9. China Scholarship Council
  10. Agencia Nacional de Investigacion y Desarrollo (ANID), Chile [NCN19_058]
  11. Fondecyt [3190878]
  12. Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico) [U0004-246083, U0004-259839, F0003-272050, M0037-279006, F0003-281692, 104497, 275201, 263356]
  13. Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute
  14. Direccion General de Asuntos del Personal AcademicoUniversidad Nacional Autonoma de Mexico (DGAPA-UNAM) [IN112417, IN112820]
  15. European Research Council [610058]
  16. Generalitat Valenciana postdoctoral grant [APOSTD/2018/177, CIDEGENT/2018/021]
  17. MICINN Research Project [PID2019-108995GB-C22]
  18. Gordon and Betty Moore Foundation [GBMF 947, GBMF-3561, GBMF-5278]
  19. Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV
  20. Simons Foundation
  21. Japanese Government (Monbukagakusho: MEXT)
  22. Japan Society for the Promotion of Science (JSPS) [JP17J08829]
  23. Leverhulme Trust
  24. Max-Planck-Gesellschaft (MPG)
  25. Max Planck Partner Group of the MPG
  26. MEXT/JSPS KAKENHI [18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007]
  27. Malaysian Fundamental Research Grant Scheme (FRGS) [FRGS/1/2019/STG02/UM/02/6]
  28. MIT International Science and Technology Initiatives (MISTI) Funds
  29. Ministry of Science and Technology (MOST) of Taiwan [105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119-M-001-027, 107-2119-M-001-017, 107-2119-M-001020, 107-2119-M-110-005, MOST 108-2112-M-001-048, MOST 109-2124-M-001-005]
  30. National Aeronautics and Space Administration (NASA) [80NSSC20K1567]
  31. NASA Astrophysics Theory Program [80NSSC20K0527]
  32. National Key Research and Development Program of China [2016YFA0400704, 2016YFA0400702]
  33. National Science Foundation (NSF) [AST-1140030, DGE-1144085, AST-1207704, AST-1207730, AST-1207752, MRI-1228509, OPP-1248097, AST-1310896, AST-1337663, AST-1440254, AST-1555365, AST-1615796, AST-1715061, AST-1716327, AST-1716536, OISE-1743747, AST-1816420, AST-1903847, AST-1935980, AST-2034306]
  34. Natural Science Foundation of China [11573051, 11633006, 11650110427, 10625314, 11721303, 11725312, 11933007, 11991052, 11991053]
  35. Natural Sciences and Engineering Research Council of Canada (NSERC)
  36. National Youth Thousand Talents Program of China
  37. National Research Foundation of Korea [NRF-2015H1A2A1033752, 2015R1D1A1A01056807, NRF-2015H1D3A1066561, 2019R1F1A1059721]
  38. Netherlands Organization for Scientific Research (NWO) VICI award [639.043.513]
  39. Spinoza Prize SPI [78-409]
  40. Swedish Research Council [2017-00648]
  41. Government of Canada
  42. Province of Ontario through the Ministry of Research, Innovation and Science
  43. Spanish Ministerio de Economia y Competitividad [PGC2018098915-B-C21, AYA2016-80889-P, PID2019-108995GB-C21]
  44. Toray Science Foundation
  45. Consejeria de Economia, Conocimiento, Empresas y Universidad of the Junta de Andalucia [P18-FR-1769]
  46. US Department of Energy (USDOE) through the Los Alamos National Laboratory
  47. National Nuclear Security Administration of the USDOE [89233218CNA000001]
  48. Italian Ministero dell'Istruzione Universita e Ricerca [CUP C52I13000140001]
  49. European Union [730562]
  50. ALMA North America Development Fund
  51. Academia Sinica
  52. NASA NuSTAR [80NSSC20K0645]
  53. Smithsonian Institution
  54. Ministry of Finance of China
  55. Chinese Academy of Sciences
  56. National Key R&D Program of China [2017YFA0402700]
  57. Science and Technologies Facility Council (UK)
  58. CNRS (Centre National de la Recherche Scientifique, France)
  59. MPG (Max-Planck-Gesellschaft, Germany)
  60. IGN (Instituto Geografico Nacional, Spain)
  61. State of Arizona
  62. National Science Foundation [PLR-1248097]
  63. NSF Physics Frontier Center [PHY-1125897]
  64. Kavli Institute of Cosmological Physics at the University of Chicago
  65. Kavli Foundation
  66. Spanish Ministry of Science [PID2019-105510GB-C31, PID2019-107427GB-C33]
  67. Generalitat Valenciana [PROMETEU/2019/071]
  68. Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) [QYZDJ-SSWSLH057, QYZDJ-SSW-SYS008, ZDBS-LY-SLH011]
  69. Hubble Fellowship - Space Telescope Science Institute [HST-HF251431.001-A]
  70. NASA [NAS5-26555]
  71. China Postdoctoral Science Foundation [2020M671266]
  72. NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program
  73. South African Radio Astronomy Observatory (SARAO)
  74. Onsala Space Observatory (OSO) national infrastructure
  75. State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award for the Instituto de Astrofisica de Andalucia [SEV-2017-0709]
  76. Consejo Superior de Investigaciones Cientificas [2019AEP112]
  77. Chandra [TM6-17006X, DD7-18089X]
  78. GenT Program (Generalitat Valenciana) Project [CIDEGENT/2018/021]
  79. NSF [ACI-1548562, DBI-0735191, DBI-1265383, DBI-1743442]
  80. Compute Ontario
  81. Calcul Quebec
  82. Compute Canada
  83. University of Amsterdam
  84. Leiden University
  85. CAS
  86. National Institute of Natural Sciences (NINS) of Japan
  87. International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne
  88. Jansky Fellowship program of the National Radio Astronomy Observatory (NRAO)
  89. The National Science Foundation (NSF) [AST-0096454, AST-0352953, AST-0521233, AST-0705062, AST-0905844, AST-0922984, AST-1126433]
  90. National Research Foundation of Korea [2019R1F1A1059721, 2015R1D1A1A01056807] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study presents the results of a full polarization study conducted using ALMA during the first VLBI campaign in 2017, revealing high linear polarization fractions and large rotation measures for various VLBI targets. The study also highlights the differences in polarization properties between blazars and other AGNs, as well as the variability in rotation measures for objects like Sgr A* and M87. The findings have important implications for the interpretation and calibration of VLBI data obtained simultaneously with EHT and GMVA.
We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the lambda 3 mm and lambda 1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%-15%) and large rotation measures (RM > 10(3.3)-10(5.5) rad m(-2)), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (-4.2 0.3) x 10(5) rad m(-2) at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (-2.1 0.1) x 10(5) rad m(-2) at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from -1.2 to 0.3 x 10(5) rad m(-2) at 3 mm and -4.1 to 1.5 x 10(5) rad m(-2) at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据