4.6 Article

REXPACO: An algorithm for high contrast reconstruction of the circumstellar environment by angular differential imaging

期刊

ASTRONOMY & ASTROPHYSICS
卷 651, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202038957

关键词

techniques: image processing; techniques: high angular resolution; methods: statistical; methods: data analysis

资金

  1. Region Auvergne-Rhone-Alpes under the project DIAGHOLO
  2. French National Programs (PNP and PNPS)
  3. Action Specifique Haute Resolution Angulaire (ASHRA) of CNRS/INSU - CNES

向作者/读者索取更多资源

The paper introduces a new post-processing algorithm, REXPACO, dedicated to reconstructing the spatial distribution of light received from off-axis sources, particularly circumstellar disks. This algorithm proves useful in reducing typical ADI artifacts and better disentangling the signal of these sources from the residual stellar contamination, showing promising results in injecting fake circumstellar disks. The processing is unsupervised and all tuning parameters are directly estimated from the data.
Context. Direct imaging is a method of choice for probing the close environment of young stars. Even with the coupling of adaptive optics and coronagraphy, the direct detection of off-axis sources such as circumstellar disks and exoplanets remains challenging due to the required high contrast and small angular resolution. Angular differential imaging (ADI) is an observational technique that introduces an angular diversity to help disentangle the signal of off-axis sources from the residual signal of the star in a post-processing step.Aims. While various detection algorithms have been proposed in the last decade to process ADI sequences and reach high contrast for the detection of point-like sources, very few methods are available to reconstruct meaningful images of extended features such as circumstellar disks. The purpose of this paper is to describe a new post-processing algorithm dedicated to the reconstruction of the spatial distribution of light (total intensity) received from off-axis sources, in particular from circumstellar disks.Methods. Built on the recent PACO algorithm dedicated to the detection of point-like sources, the proposed method is based on the local learning of patch covariances capturing the spatial fluctuations of the stellar leakages. From this statistical modeling, we develop a regularized image reconstruction algorithm (REXPACO) following an inverse problems approach based on a forward image formation model of the off-axis sources in the ADI sequences.Results. Injections of fake circumstellar disks in ADI sequences from the VLT/SPHERE-IRDIS instrument show that both the morphology and the photometry of the disks are better preserved by REXPACO compared to standard post-processing methods such as cADI. In particular, the modeling of the spatial covariances proves useful in reducing typical ADI artifacts and in better disentangling the signal of these sources from the residual stellar contamination. The application to stars hosting circumstellar disks with various morphologies confirms the ability of REXPACO to produce images of the light distribution with reduced artifacts. Finally, we show how REXPACO can be combined with PACO to disentangle the signal of circumstellar disks from the signal of candidate point-like sources.Conclusions.REXPACO is a novel post-processing algorithm for reconstructing images of the circumstellar environment from high contrast ADI sequences. It produces numerically deblurred images and exploits the spatial covariances of the stellar leakages and of the noise to efficiently eliminate this nuisance term. The processing is fully unsupervised, all tuning parameters being directly estimated from the data themselves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据