4.7 Article

Computational fluid-dynamic modelling of two-phase compressible flows of carbon dioxide in supercritical conditions

期刊

APPLIED THERMAL ENGINEERING
卷 190, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.116816

关键词

Carbon dioxide; Two-phase flows; Non-ideal effects; Supersonic flows

向作者/读者索取更多资源

This study investigates cavitating and condensing flows of carbon dioxide via numerical simulations using both a mixture model and a barotropic model. The results are compared against experimental data, discussing the numerical issues of the models and suggesting improvements in physical modeling. The barotropic model is shown to provide comparable predictions of expansion processes with lower computational cost and improved solver robustness.
Compressible two-phase flows of carbon dioxide in supercritical thermodynamic conditions are encountered in many applications, e.g. ejectors for refrigeration and compressors for power production and carbon capture and sequestration to name a few. Alongside the phase change, transonic/supersonic flow regimes and non-ideal effects also add additional complexities in the simulations of such flows. In this work, we investigate cavitating and condensing flows of carbon dioxide via numerical simulations based on the two-fluid concept, applying both a mixture model and a barotropic model. In the mixture model, the phase change is modelled with an extra transport equation for the mass of the dispersed phase and a source term introduced via a penalty formulation. The barotropic model reproduces the pressure-density relation of the mixture along the upstream isentrope. Both the models assume thermodynamic and mechanical equilibrium between phases and exclude meta-stability effects. All results are compared against experimental data taken from literature and the main numerical issues of the models are discussed in detail. The agreement between the simulations and the experiments is remarkable qualitatively and quantitatively, resulting in the range 2%-4% for pressure and below 1% for temperature in terms of weighted mean absolute percentage error for supercritical expansions, even though suggesting a further margin of improvement in the physical modelling, especially for subcritical expansions. Finally, we show that the barotropic model yields comparable predictions of the expansion processes at a lower computational cost and with an improved solver robustness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据