4.7 Article

Defect-engineered 2D/2D hBN/g-C3N4 Z-scheme heterojunctions with full visible-light absorption: Efficient metal-free photocatalysts for hydrogen evolution

期刊

APPLIED SURFACE SCIENCE
卷 547, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2021.149207

关键词

Defect-engineered; hBN; g-C3N4; Z-scheme heterojunctions; Photocatalysts

资金

  1. National Natural Science Foundation of China [11764018]
  2. Natural Science Foundation of Jiangxi Province [20202ACBL211004, 20192BAB212003]
  3. Science and Technology Planning Project of Ganzhou City

向作者/读者索取更多资源

By studying 2D/2D hBN/g-C3N4 nanocomposites with different types of defects, it was found that defect-induced Z-scheme vdW heterojunctions play a key role in enhancing photocatalytic performance. Compared to perfect structures, defective structures show stronger charge transfer and full visible-light response.
2D/2D hBN/g-C3N4 nanocomposites with good photocatalytic activity have been successfully prepared, and fortunately defected 2D material heterojunction opens up new possibilities for high-efficiency photocatalysts. However, its photocatalytic performance and mechanism in splitting water have not been thoroughly explored. Herein, using the state-of-theart TDHF-HSE06 method, 2D/2D hBN/g-C3N4 nanocomposites with different defected types were discussed in detail, including C atoms doping and natural point vacancies. We demonstrate that the defect-induced Z-scheme vdW heterojunction is a key for excellent photocatalytic performance. Compared to perfect hBN/g-C3N4, the defected hBN/g-C3N4 heterojunctions have stronger interfacial interaction with more than 20 times of charge transfer. And it even has full visible-light response due to the suitable band gap width. More importantly, the Z-scheme band edge potentials have perfect redox capacity for water splitting at both PH = 0 and 7. The findings not only explain the existing experimental phenomena, but also provide new insights into the design of high-efficiency metal-free photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据