4.7 Article

Highly efficient and stable inorganic CsPbBr3 perovskite solar cells via vacuum co-evaporation

期刊

APPLIED SURFACE SCIENCE
卷 562, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2021.150153

关键词

Vacuum co-evaporation; Perovskite solar cells; Stability; CsPbBr3

资金

  1. National Nature Science Foundation of China [21401167]
  2. Key R&D and Promotion Project of Henan Province [192102210032, 202102210117]
  3. Open Project of State Key Laboratory of Silicon Materials [SKL201910]
  4. Outstanding Young Talent Research Fund of Zhengzhou University

向作者/读者索取更多资源

High PCE and long-term stability are important for perovskite solar cells. By depositing CsPbBr3 perovskite film through vacuum co-evaporation and optimizing the preparation conditions, films with large grains and high crystallinity can be obtained to achieve high PCE. Controlling spinning speed of TiO2 precursor solution and thickness of CsPbBr3 film can enhance the PCE of solar cells under illumination conditions.
High power conversion efficiency (PCE) and good long-term stability are everlasting pursuit for perovskite solar cells. We present here CsPbBr3 perovskite film deposited by vacuum co-evaporation of CsBr and PbBr2. By optimizing evaporation rate ratio of the two precursor and annealing temperature, perovskite films with large grain and high crystallinity are obtained. Furthermore, by regulating spinning speed of TiO2 precursor solution and thickness of CsPbBr3 film, a best PCE of 9.43% is recorded under 100 mW cm-2 illumination, providing a significant enhancement in contrast with 6.26% of device based on spin-coating method. Additionally, the PCE of resulting perovskite solar cell without encapsulation remains at 96% of initial value after storing for 480 h under humidity of 40% in air. Our findings in this work deliver an effective strategy to fabricate high-performance inorganic perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据