4.7 Article

Bifunctional sharkskin mimicked chitosan/graphene oxide membranes: Reduced biofilm formation and improved cytocompatibility

期刊

APPLIED SURFACE SCIENCE
卷 544, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.148828

关键词

Sharkskin; Graphene oxide; Chitosan; Biomimetic surface; Antibacterial; Cytocompatible

资金

  1. Bogazici University Research Fund [6701]

向作者/读者索取更多资源

The study demonstrates that sharkskin topography possesses excellent antibacterial activity, while sharkskin mimicked membranes coated with graphene oxide exhibit superior cytocompatibility, indicating significant potential for diverse biomedical applications.
Antibacterial activity and cytocompatibility are the two essential characteristics that an ideal implantable biomaterial must possess simultaneously. Biomaterials with these characteristics can be fabricated via combination of chemical and topographical features. Herein, design and fabrication of a sharkskin mimicked Graphene Oxide modified Chitosan membrane with enhanced antibacterial and cytocompatibility properties was investigated. As a measure of antibacterial properties, viability of planktonic and bacterial biofilm was measured using gram-positive Staphylococcus aureus and gram-negative Escherichia coil. Results showed a significant reduction in bacterial adhesion and biofilm growth induced by sharkskin surface topography regardless of chemical modifications for both strains, hence proving the superior antibacterial activity of sharkskin topography. Furthermore, the highest level of cell viability and proliferation of cultured human keratinocyte (HaCaT) and mouse fibroblast (L929) cell lines belonged to Graphene Oxide (GO) coated sharkskin mimicked membranes. Our results indicate that GO coated (GOc) sharkskin mimicked membranes can significantly reduce bacterial biofilm formation in stationary culture conditions while promoting cytocompatibility. The duo of sharkskin surface topography and GO coating provides remarkable potentials as a cytocompatible and antibacterial biomaterial for diverse biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据