4.7 Article

Applying nonlocal strain gradient theory to size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoplates

期刊

APPLIED MATHEMATICAL MODELLING
卷 93, 期 -, 页码 775-791

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2021.01.001

关键词

CNTs; Free vibration; Nonlocal strain gradient theory; Navier solution; Nanoplate

资金

  1. Vietnam National Foundation for Science and Technology Development (NAFOSTED) [107.02-2019.330]

向作者/读者索取更多资源

This research paper investigates the vibrational responses of functionally graded carbon nanotube-reinforced composite nanoplates considering the effect of nonlocal parameter and strain gradient coefficient. By studying four types of CNT distribution under small length scale effects, the study aims to estimate the fundamental natural frequencies in FG-CNTRC nanoplates. The mathematical modeling and analytical solutions provide insights into how the small length-scale influences the vibrational behavior of nanoplates.
In this research paper, as initial endeavors, the vibrational responses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates taking into account the effect of nonlocal parameter and strain gradient coefficient are investigated. The study aims at developing mathematical modeling via an analytical solution to FG-CNTRC nanoplate structure with allowance for the nonlocal strain gradient effect. The four types of CNT distribution are used and compared in the context of the vibration of nanoplate in the presence of the small length scale effects, namely the (a) UD, (b) FG-V, (c) FG-O, and (d) FG-X. Some theoretical equations based on the first-order shear deformation plate theory (FSDT) are presented to provide a lucid understanding of how the small length-scale influences the FG-CNTRC nanoplate. For the vibrational analysis of a nanoplate, which is simply supported boundary condition, Navier solutions are obtained. Also, in contrast to earlier studies, an analytical approach is used to establish the governing equations of the FG-CNTRC nanoplate. Some specific numerical examples are given and compared with the results presented in the literature. In the section of numerical results, the influence of the nonlocal parameter, strain gradient coefficient, geometric parameters and vibrational modes on the non-dimensional natural frequency are investigated and discussed in detail. These could be useful to analysts and designers to estimate the fundamental natural frequencies in each of the four CNT distributions that the FG-CNTRC nanoplate possesses. (c) 2021 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据