4.8 Article

Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach

期刊

APPLIED ENERGY
卷 290, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.116746

关键词

Renewable energy; Hybrid energy system; Inherent safety index; Hydrogen; Sustainability assessment; Decision-making

资金

  1. French PIA project Lorraine Universite d'Excellenc [ANR-15-IDEX-04-LUE]

向作者/读者索取更多资源

This study investigates the conceptual design of distributed energy systems through a multi-objective optimization strategy to address economic, environmental, and social aspects simultaneously. Using single-objective optimization problems and a framework including multiple sustainability indicators, a comprehensive analysis was conducted to identify trade-offs among different objectives and explore changes in design and operating conditions. Results showed ranges of energy cost, CO2 emissions, and water consumption, depending on the evaluated objectives, and suggestions for improving the safety of the energy system were made.
The design of sustainable energy systems requires to enlarge the analysis beyond the traditional boundaries for including the economic, environmental, and societal needs and constraints in the decision-making process. In this regard, this work investigates the conceptual design of distributed energy systems by means of a multi-objective optimization strategy to simultaneously address the economic, environmental, and social aspects in the energy system design. Initially, the water consumption and the inherent safety indicators were introduced and evaluated through two single-objective optimization problems to enhance the analysis of the environmental and social dimensions of sustainability. Then, a framework including the total annualized cost, CO2 emissions, water consumption, grid dependence, and inherent safety index was used to perform the multi-objective analysis. To carry out a thorough and comprehensive analysis, four optimization problems including different combinations of the sustainability indicators were proposed and solved. The compromise among the objective functions was identified, and the obtained Pareto sets were explored for elucidating the changes in the design and operating conditions across the non-dominated solutions. According to results, the cost of energy can range between 0.37 and 0.63 ?/kWh, the CO2 emissions can vary between 10.6 and 68.5 kgCO2/MWh, and the water consumption can be between 27.8 and 70.2 m3H2O/GWh depending on the evaluated objective. Moreover, it was determined that the safety of the energy system can be improved by increasing the use of the water electrolysis pathway to produce hydrogen and by reducing the capacity of the hydrogen storage unit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据