4.5 Article

SEASONAL AND FLOW-DRIVEN DYNAMICS OF PARTICULATE AND DISSOLVED MERCURY AND METHYLMERCURY IN A STREAM IMPACTED BY AN INDUSTRIAL MERCURY SOURCE

期刊

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
卷 35, 期 6, 页码 1386-1400

出版社

WILEY
DOI: 10.1002/etc.3310

关键词

Mercury; Methylmercury; Industrial contamination; Stream; Stormflow

资金

  1. US Department of Energy (DOE), Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research Program

向作者/读者索取更多资源

Sediments and floodplain soils in the East Fork Poplar Creek watershed (Oak Ridge, TN, USA) are contaminated with high levels of mercury (Hg) from an industrial source at the headwaters. Although baseflow conditions have been monitored, concentrations of Hg and methylmercury (MeHg) during high-flow storm events, when the stream is more hydrologically connected to the floodplain, have yet to be assessed. The present study evaluated baseflow and event-driven Hg and MeHg dynamics in East Fork Poplar Creek, 5 km upstream of the confluence with Poplar Creek, to determine the importance of hydrology to in-stream concentrations and downstreamloads and to ascertain whether the dynamics are comparable to those of systems without an industrial Hg source. Particulate Hg and MeHg were positively correlated with discharge (r(2) = 0.64 and 0.58, respectively) and total suspended sediment (r(2) = 0.97 and 0.89, respectively), and dissolved Hg also increased with increasing flow (r(2) = 0.18) and was associated with increases in dissolved organic carbon (r(2) = 0.65), similar to the dynamics observed in uncontaminated systems. Dissolved MeHg decreased with increases in discharge (r(2) = 0.23) and was not related to dissolved organic carbon concentrations (p = 0.56), dynamics comparable to relatively uncontaminated watersheds with a small percentage of wetlands (<10%). Although stormflows exert a dominant control on particulate Hg, particulate MeHg, and dissolved Hg concentrations and loads, baseflows were associated with the highest dissolved MeHg concentration (0.38 ng/L) and represented the majority of the annual dissolved MeHg load. Published 2015 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US Government work, and as such, is in the public domain in the United States of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据