4.8 Article

CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 285, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119838

关键词

CZ@T-GCN; Double Z-scheme heterojunction; Photocatalytic decontamination; Amoxicillin degradation; Pharmaceutical wastewater

资金

  1. Alborz University of Medical Sciences [99.60.1250]

向作者/读者索取更多资源

In this study, CZ@T-GCN nanocomposite was successfully prepared with high photocatalytic activity for efficient degradation of AMOX. The research confirmed that under specific operating parameters, the material can rapidly remove AMOX and has potential for industrial applications.
In this study, both CuO nanoparticles and ZnO nanorods were anchored on thermally-exfoliated g-C3N4 nano sheets (denoted as CZ@T-GCN) via isoelectric point-mediated annealing process as a novel nano-photocatalyst towards degradation of amoxicillin (AMOX). The features of prepared materials were characterized using BET, UV-vis DRS, XRD, FT-IR, XPS, FE-SEM, TEM, EIS and transient photocurrent techniques. These analyses demonstrated the successful formation of heterojunctions between components of CZ@T-GCN nanocomposite, which reflected in significantly increased electron-hole separation and enhanced degradation of AMOX as compared with pure substances. The investigation of influential operative parameters confirmed that the complete removal of AMOX could be attained under catalytic dosage of 0.9 g L-1 and pH of 7.0 within 120 min simulated sunlight illumination. Generation of OH center dot upon illumination of catalysts was verified by terephthalic acid photoluminescence (TPA-PL) spectroscopy. Also, trapping tests proved that OH center dot and O-2(center dot-) were the major reactive radicals in AMOX decontamination. A novel double Z-scheme mechanism as well as a tentative pathway for fractionation of AMOX by CZ@T-GCN photocatalytic system were proposed in details. Only a marginal decrease in photocatalytic activity occurred after 5 consecutive tests. In an attempt to study the industrial applicability of catalyst, more than 79 % COD and 63 % TOC were eliminated under optimum conditions during 120 min illumination and the biodegradability of treated wastewater was also improved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据