4.8 Article

The significant role of the chemically bonded interfaces in BiVO4/ZnO heterostructures for photoelectrochemical water splitting

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 285, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119833

关键词

Heterostructure; Quantum dots; Nanoparticles; Photocatalysis; BiVO4

资金

  1. Natural Science Foundation of Shandong Province of China [ZR2019MB006]
  2. China Postdoctoral Science Foundation [2018M632610, 2017M610409]
  3. National Natural Science Foundation of China [21303232]
  4. Youth Innovation Promotion Association of the Chinese Academy of Sciences [2014380]
  5. World-Class University and Discipline Program and the Taishan Scholar's Advantageous and Distinctive Discipline Program and the world-Class Discipline Program of Shandong Province

向作者/读者索取更多资源

Chemically bonded BiVO4/ZnO quantum dot heterostructures were fabricated using a simple solution dry-out method, forming chemically bonded interfaces (CBIs) that promote photoexcited electron transfer and serve as hole-blocking layers. The CBIs showed excellent performance in both UV and visible light regions, leading to significantly increased photocurrent density in BiVO4/ZnO QDs without a cocatalyst. Additionally, ethylene glycol was found to partially reduce Bi ions to elemental bismuth during the calcination process, contributing to improved water oxidation kinetics.
We have fabricated chemically bonded BiVO4/ZnO quantum dot (QD) heterostructures through a simple solution dry-out method. Chemically bonded interfaces (CBIs), thin films surrounding the ZnO QDs, are formed during the calcination process, which tightly combines the BiVO4 and ZnO structures through Bi-O and Zn-O bonds. The first principle calculations demonstrate that CBIs can not only facilitate the photoexcited electron transfer from ZnO to BiVO4, but can also trap their holes serving as a hole-transport layer. As observed from the spectra of incident photo-to-current conversion efficiency (IPCE), CBIs operate in the UV as well as the visible light region. The BiVO4/ZnO QDs showed the greatest photocurrent density (5.5 mA/cm(2) at 1.23 V vs. RHE) in the absence of a cocatalyst. Moreover, the etched XPS spectra show that the Bi ions get partially reduced to elemental bismuth by ethylene glycol during the calcination process. This can also contribute to the water oxidation kinetics facilitated by the valence variation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据