4.6 Article

Integrative Analysis of Selected Metabolites and the Fungal Transcriptome during the Developmental Cycle of Ganoderma lucidum Strain G0119 Correlates Lignocellulose Degradation with Carbohydrate and Triterpenoid Metabolism

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00533-21

关键词

Ganoderma lucidum; lignocellulose; carbohydrate; triterpenoid

资金

  1. Shanghai Agriculture Applied Technology Development Program of China [1-1]
  2. Science and Technology Commission of Shanghai Municipality [19390743500]
  3. SAAS Program for Excellent Research Team [2017A-06]

向作者/读者索取更多资源

The study focused on understanding the relationship between substrate degradation and carbohydrate/triterpenoid metabolism in Ganoderma lucidum. It was found that carbohydrate degradation products contribute to the synthesis of polysaccharides, trehalose, and polyols during initial fruiting body formation, providing precursors for triterpenoid synthesis. The findings suggest that enhancing triterpenoid synthesis can be achieved through regulating carbohydrate metabolism and substrate degradation in addition to enzyme expression in the triterpenoid pathway.
To systemically understand the biosynthetic pathways of bioactive substances, including triterpenoids and polysaccharides, in Ganoderma lucidum, the correlation between substrate degradation and carbohydrate and triterpenoid metabolism during growth was analyzed by combining changes in metabolite content and changes in related enzyme expression in G. lucidum over 5 growth phases. Changes in low-polarity triterpenoid content were correlated with changes in glucose and mannitol contents in fruiting bodies. Additionally, changes in medium-polarity triterpenoid content were correlated with changes in the lignocellulose content of the substrate and with the glucose, trehalose, and mannitol contents of fruiting bodies. Weighted gene coexpression network analysis (WGCNA) indicated that changes in trehalose and polyol contents were related to carbohydrate catabolism and polysaccharide synthesis. Changes in triterpenoid content were related to expression of the carbohydrate catabolic enzymes lactase, cellulase, hemicellulase, and polysaccharide synthase and to the expression of several cytochrome P450 monooxygenases (CYPs). It was concluded that the products of cellulose and hemicellulose degradation participate in polyol, trehalose, and polysaccharide synthesis during initial fruiting body formation. These carbohydrates accumulate in the early phase of fruiting body formation and are utilized when the fruiting bodies mature and a large number of spores are ejected. An increase in carbohydrate metabolism provides additional precursors for the synthesis of triterpenoids. IMPORTANCE Most studies of G. lucidum have focused on its medicinal function and on the mechanism of its activity, whereas the physiological metabolism and synthesis of bioactive substances during the growth of this species have been less studied. Therefore, theoretical guidance for cultivation methods to increase the production of bioactive compounds remains lacking. This study integrated changes in the lignocellulose, carbohydrate, and triterpenoid contents of G. lucidum with enzyme expression from transcriptomics data using WGCNA. The findings helped us better understand the connections between substrate utilization and the synthesis of polysaccharides and triterpenoids during the cultivation cycle of G. lucidum. The results of WGCNA suggest that the synthesis of triterpenoids can be enhanced not only through regulating the expression of enzymes in the triterpenoid pathway, but also through regulating carbohydrate metabolism and substrate degradation. This study provides a potential approach and identifies enzymes that can be targeted to regulate lignocellulose degradation and accelerate the accumulation of bioactive substances by regulating substrate degradation in G. lucidum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据