4.8 Article

Polymorphism and Fast Potassium-Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 60, 期 24, 页码 13641-13646

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202101187

关键词

ion conductivity; phosphidosilicate; potassium; solid electrolyte; supertetrahedra

资金

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. German Federal Ministry of Research and Education (BMBF) [03XP0177B]

向作者/读者索取更多资源

KSi2P3 is a potassium ion conductor with high ionic conductivity, low cost and a large electrochemical window. The crystal structure includes channels for easy movement of potassium ions.
The all-solid-state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth-abundant and inexpensive elements are urgently sought. Besides well-studied sodium compounds, potassium-based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K-ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 degrees C with enantiotropic displacive phase transitions upon cooling at about 155 degrees C and 80 degrees C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6x10(-4) S cm(-1) at 25 degrees C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non-oxide solid potassium ion conductor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据