4.7 Article

A mutation in SLC37A4 causes a dominantly inherited congenital disorder of glycosylation characterized by liver dysfunction

期刊

AMERICAN JOURNAL OF HUMAN GENETICS
卷 108, 期 6, 页码 1040-1052

出版社

CELL PRESS
DOI: 10.1016/j.ajhg.2021.04.013

关键词

-

资金

  1. Rocket Fund
  2. European Union's Horizon 2020 research and innovation program under the ERANETcofund [643578]
  3. Fondation Maladies Rares (FMR) [WES-20160717]
  4. Commissariat a l'Energie Atomique et aux Energies Alternatives
  5. MetaboHUB infrastructure [ANR-11-INBS-0010]
  6. [R01DK99551]

向作者/读者索取更多资源

The study identified a recurrent mutation in SLC37A4 causing a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans. Liver-specific abnormalities in glycosylation were replicated in a CRISPR base-edited hepatoma cell line carrying the mutation. The mutant protein showed relocation to a non-Golgi compartment and altered Golgi morphology and reduced intraluminal pH, potentially explaining the glycosylation alterations.
SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423*), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423*) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据