4.7 Article

Numerical study on compression processes of cohesive bimodal particles and their packing structure

期刊

ADVANCED POWDER TECHNOLOGY
卷 32, 期 5, 页码 1362-1368

出版社

ELSEVIER
DOI: 10.1016/j.apt.2021.02.040

关键词

Discrete element method; Cohesive powder; Bimodal particle size; Packing structure; Compression

资金

  1. Japan Society for the Promotion of Science (JSPS) [18H01769]
  2. [20505]
  3. Grants-in-Aid for Scientific Research [18H01769] Funding Source: KAKEN

向作者/读者索取更多资源

The study found that an increase in particle size ratio can reduce void fraction even in the presence of cohesive particles. Cohesive force decreases contact number, especially between coarse particles.
In this study, the compression characteristics of bimodal cohesive particles were investigated using a discrete element method (DEM) simulation. The compression and packing processes were simulated under different conditions of size ratios of 1-4 and fine particle mixing ratios of 0-0.5. The cohesive force was expressed using the surface energy proposed by the Johnson-Kendall-Roberts (JKR) cohesion model having a surface energy of 0-0.2 J/m(2). The calculated results demonstrated that even in the case of cohesive particles, an increase in the particle size ratio reduced the void fraction of the powder bed during the packing and compression processes. In addition, it was found that the cohesive force decreased the contact number, especially the coarse-coarse contacts, although it had little impact on the void fraction. Our DEM simulations suggested that it is necessary to evaluate the contact numbers even under similar void fractions, which will be essential in the case of different material mixtures, such as all-solid-state batteries. (C) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据