4.8 Article

Thermally Stable Single-Atom Heterogeneous Catalysts

期刊

ADVANCED MATERIALS
卷 33, 期 50, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202004319

关键词

atom trapping; catalytic performance; coordination structures; single‐ atom catalysts; thermally stable materials

资金

  1. National High-Level Young Talents
  2. National Natural Science Foundation of China [22072118]
  3. U.S. Department of Energy (DOE), Office of Basic Energy Sciences (SC), Division of Chemical Sciences [DE-FG02-05ER15712]

向作者/读者索取更多资源

This article discusses recent advances in the development of thermally durable single-atom heterogeneous catalysts, describes several important preparation approaches for thermally stable SACs, and discusses the fundamental understanding of the coordination structures of thermally stable single atom prepared by these methods. The catalytic performances of these thermally stable SACs, including their activity and stability, are reviewed. Finally, a perspective of this important and rapidly evolving research field is provided.
Single-atom catalysts (SACs) have attracted extensive attention in fields related to energy, environment, and material sciences because of the high atom efficiency and the unique properties of these materials. Many approaches have hitherto been successfully established to prepare SACs, including impregnation, pyrolysis-involved processes, atom trapping, and coprecipitation. However, under typical reaction conditions, single atoms on catalysts tend to migrate or agglomerate, forming nanoclusters or nanoparticles, which lowers their surface free energy. Efforts are required to develop strategies for improving the thermal stability of SACs while achieving excellent catalytic performance. In this Progress Report, recent advances in the development of thermally durable single-atom heterogeneous catalysts are discussed. Several important preparation approaches for thermally stable SACs are described in this article. Fundamental understanding of the coordination structures of thermally stable single atom prepared by these methods is discussed. Furthermore, the catalytic performances of these thermally stable SACs are reviewed, including their activity and stability. Finally, a perspective of this important and rapidly evolving research field is provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据