4.7 Article

Do aeration conditions affect arsenic and phosphate accumulation and phosphate transporter expression in rice (Oryza sativa L.)?

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-016-7976-3

关键词

Arsenic; Anoxia; Rice; Phosphate accumulation; Phosphate transportation

资金

  1. China Postdoctoral Science Foundation [2016M590755]
  2. National Natural Science Foundation of China [31300815]
  3. Research Foundation for Teachers of Central South University, China

向作者/读者索取更多资源

Widespread contamination of rice with arsenic (As) has revealed a major exposure pathway to humans. The present study aimed to investigate the effects of oxygen in the rhizosphere on phosphate (P) transporter (for arsenate transportation) expressions, on As and P accumulation and As speciation in four rice genotypes. Oxygenation marginally increased root and shoot length. Total As concentrations in rice roots were dramatically reduced following aeration compared to stagnant treatments (p < 0.001). Aeration treatments significantly increased arsenate while reducing arsenite concentrations in roots (p < 0.001). Root arsenite concentrations were 1.5-2.5 times greater in stagnant than in aeration treatments. Total P concentrations in rice roots were dramatically increased following aeration compared to stagnant treatments. The relative abundance of phosphate transporter (inorganic phosphate transporter and phosphate/H+ symporter family protein) expressions showed downregulation in aeration treatments, particularly for SY-9586, XWX-17, and XWX-12 in inorganic phosphate transporter expressions and XWX-17 in phosphate/H+ symporter family protein expression (p < 0.05). The relative abundance of phosphate carrier protein expressions were relatively higher than the other phosphate transporters, showing upregulation in aeration treatments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据