4.8 Article

Selective Excitation of Polarization-Steered Chiral Photoluminescence in Single Plasmonic Nanohelicoids

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 30, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202101502

关键词

chiral photoluminescence; chiral Purcell enhancement; circular dichroism; gold nanohelicoids; structural chirality

资金

  1. Research Grants Council of Hong Kong [152603/16E, C6013-18G]

向作者/读者索取更多资源

This study reported the chiral excitation and emission properties of single gold nanohelicoids, revealing that the geometric chirality induces the observed excitation-polarization-correlated chiral PL. Two models were developed to analyze the observed circular-polarization-steered effect, broadening the research scope of chiral PL-active materials.
The development of chiral photoluminescence (PL) has drawn extensive attention owing to its potential applications in optical data storage, biosensing, and displays. Due to the lack of effective synthesis methods, colloidal metal nanostructures with intrinsic chiral PL have rarely been reported. Herein, the chiral excitation and emission properties of single gold nanohelicoids (GNHs) are reported for the first time. By measuring their circular dichroism (CD) response and excitation/emission polarization-resolved PL spectra, it is revealed that the intrinsic chirality arising from the geometric handedness of the GNHs induces the observed excitation-polarization-correlated chiral PL. Two models are developed to analyze the observed circular-polarization-steered effect: (1) a chiral PL phenomenological model quantitatively reproduces the PL dissymmetry features; (2) a chiral Purcell effect model reveals that the super-chiral near fields in the GNHs account for the far-field chiral responses such as the polarization-steered chiral PL. The findings not only provide an important understanding of the physical mechanism responsible for luminescent chiral plasmonic nanostructures, but also expand the research on chiral PL-active materials from achiral/chiral hybrid systems to metallic nanostructures with intrinsic structural chirality, thereby broadening the scope of applications in 3D chiral imaging and sensing as well as microstructure analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据