4.8 Article

Building Elastic Solid Electrolyte Interphases for Stabilizing Microsized Antimony Anodes in Potassium Ion Batteries

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 26, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202102562

关键词

antimony; atomic force microscopy; energy conversion; potassium ion batteries; solid electrolyte interphase

资金

  1. General Research Fund (GRF) scheme of the Hong Kong Research Grants Council [15305219]
  2. Hong Kong Polytechnic University (ZVGH) [1-ZE30]
  3. Guangdong-Hong Kong-Macao Joint Laboratory [2019B121205001]

向作者/读者索取更多资源

This study demonstrates the importance of building robust solid electrolyte interphase (SEI) in stabilizing microsized alloy anodes, by regulating the electrolyte chemistry to enhance the elasticity of SEI. The SEI constructed in ether-based electrolyte effectively encapsulates microsized Sb anodes, preventing capacity loss and achieving sustained high capacity in K-ion batteries through an intercalation-assisted alloying reaction mechanism.
Alloy anodes composed of microsized particles receive increasing attention recently, which outperform the nanostructured counterparts in both the manufacturing cost and volumetric energy density. However, the pulverization of particles and fracture of solid electrolyte interphase (SEI) during cycling brings about fast capacity degradation. Herein, it is shown how normally considered fragile SEI can become highly elastic through electrolyte chemistry regulation. Compared to the SEI constructed in classic carbonate electrolyte, the atomic force microscopy tests reveal that the one built in ether-based electrolyte doubles the maximum elastic strain to accommodate the repeated swelling-contracting. Such an SEI effectively encapsulates the microsized Sb anodes to prevent the capacity loss from particle isolation. Coupled with an intercalation-assisted alloying reaction mechanism, a sustained capacity of approximate to 573 mAh g(-1) after 180 cycles at 0.1 A g(-1) with outstanding initial Coulombic efficiency is obtained, which is among the highest values achieved in K-ion batteries. This study emphasizes the significance of building robust SEI, which offers the opportunity to enable stable microsized alloy anodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据