4.8 Article

Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in Front Sub-Cell

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 29, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202103283

关键词

charge recombination; fill factor; high efficiency; interconnecting layers; tandem devices

资金

  1. National Key Research and Development Program of China - MOST [2019YFA0705900]
  2. Basic and Applied Basic Research Major Program of Guangdong Province [2019B030302007]
  3. Distinguished Young Scientists Program of Guangdong Province [2019B151502021]
  4. Natural Science Foundation of China [21875073]

向作者/读者索取更多资源

By developing an efficient interconnecting layer and adjusting the composition of the active layer, the research achieved an efficient TOSC with a high fill factor and excellent PCE.
The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub-cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub-cell in such TOSCs can be reduced by increasing the proportion of a non-fullerene acceptor in the active layer. The non-fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub-cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub-cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine-turning of the composition in the front sub-cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据