4.8 Article

Carbon-Supported High-Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 21, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202010561

关键词

electrocatalysts; high‐ entropy oxides; high‐ temperature synthesis; nanoparticles

资金

  1. National Science Foundation [DMR-1809439]

向作者/读者索取更多资源

This study presents a highly stable and active electrocatalyst with high-entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black, synthesized via rapid high-temperature heating with ten metal elements. The electrocatalyst exhibits good stability and activity during long-term operation, attributed to the high-entropy design and synthetic approach that provide an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate.
Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long-term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high-entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high-temperature heating (approximate to 1 s, 1400 K). Notably, the HEO nanoparticles with a record-high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high-temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high-entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10-element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high-entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon-supported high-entropy electrocatalysts with good stability and high activity for various applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据