4.8 Article

Lightweight Ni Foam-Based Ultra-Broadband Electromagnetic Wave Absorber

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 30, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202103436

关键词

electromagnetic wave absorption; in situ growth; interfacial polarization; multiple reflections; Ni foam

资金

  1. National Science Foundation of China [51872238, 21806129, 52074227]
  2. Fundamental Research Funds for the Central Universities [3102018zy045, 3102019AX11]
  3. Natural Science Basic Research Plan in Shaanxi Province of China [2020JM-118, 2017JQ5116]
  4. Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University [CX202050]

向作者/读者索取更多资源

In this study, lightweight Ni foam with NiO/NiFe2O4 in situ growth composites were fabricated to address the issues of poor dispersibility and chemical stability in metal-based electromagnetic wave absorbing materials. The foam structure and NiO/NiFe2O4/Ni components were found to synergistically enhance the EM wave absorption capacity. This work sheds light on the synergistic effect of structure and components on EM wave absorption behaviors, offering a new pathway for preparing lightweight and high-performance metal-based EM wave absorbers.
Skin effect and high density are the main reasons that restrict the search of lightweight and high-performance metal-based electromagnetic (EM) wave absorbing materials. Although nanostructured metal materials have been fabricated to solve above problems, poor dispersibility and chemical stability issues brought about by high surface energy due to existing nano-size effect. In this work, lightweight Ni foam with NiO/NiFe2O4 in situ growth composites are fabricated by a facile and universal route as an effective alternative to high-performance metal-based EM wave absorber. Impressively, it is found that the foam structure and NiO/NiFe2O4/Ni components can synergistically boost EM wave absorption capacity. In detail, impedance matching from foam structure and energy dissipation from interfacial polarization and defect induced polarization provided by NiO/NiFe2O4 mainly contributes to its ultra-broadband EM wave absorption performance. As a result, the as-prepared sample (0.06 g.cm(-3)) delivers a wide absorption bandwidth of 14.24 GHz and thin thickness of 0.6 mm, as well as, high specific effective absorption bandwidth of 19444.4 GHz.g(-1).cm(-2). This work sheds light on the novel view on the synergistic effect of structure and components on EM wave absorption behaviors and demonstrates a new pathway for preparation of lightweight and high-performance metal-based EM wave absorbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据