4.8 Article

Shape-Memory Balloon Structures by Pneumatic Multi-material 4D Printing

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 21, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202010872

关键词

4D printing; balloon structures; multi‐ material 3D printing; shape memory polymers

资金

  1. Air Force Office of Scientific Research grant (AFOSR) [FA9550-19-1-0151, FA-20-1-0306]

向作者/读者索取更多资源

A novel 4D printing method has been developed in this study, utilizing multi-material digital light process 3D printing of shape memory polymers to fabricate structures that can later transform into complex 3D shapes with robust mechanical properties through pneumatic manipulation. Experimental investigations demonstrate the capability of printing various complex shapes with strong mechanical stiffness and lightweight features, providing new potential applications in biomedical devices, reconfigurable structures, and metamaterials.
4D printing is an attractive approach for manufacturing structures that can adopt new shapes or functionalities after printing. However, 4D printing methods and materials that can be used to achieve structures with complex shapes and excellent mechanical properties simultaneously are still lacking. Here, a novel 4D printing is developed where multi-material digital light process 3D printing of shape memory polymers (SMPs) fabricates a structure that is later transformed into a complex 3D shape with robust mechanical properties by pneumatic manipulation. In this method, the shape change is controlled by the spatial distributions of SMPs, which is designed by finite element analysis. Experimental investigations are carried out to print various structured balloons with predefined intricate shapes, including a structure in dog-like shape and a surface with the human face contour. These structures are also endowed with robust mechanical stiffness and lightweight features, which allow this new 4D printing approach for potential applications in biomedical devices, reconfigurable structures, and metamaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据