4.7 Article

Effects of local stress, strain, and hydrogen content on hydrogen-related fracture behavior in low-carbon martensitic steel

期刊

ACTA MATERIALIA
卷 210, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.116828

关键词

Hydrogen embrittlement; Martensite; Stress and strain; Finite-element simulation; Digital image correlation

资金

  1. JSPS KAKENHI [JP15H04158, JP15H05767, JP19H02459, JP20K21083]
  2. Elements Strategy Initiative for Structural Materials (ESISM) from MEXT Japan

向作者/读者索取更多资源

In this study, the hydrogen-related fracture behavior of specimens with different stress concentration factors was investigated through microstructure observation, FE simulation, and DIC analysis. It was found that when the hydrogen content was large, cracks initiated and propagated along the prior austenite grain boundaries, while for specimens with small hydrogen content, quasi-cleavage cracks formed at the surface and propagated along specific crystal planes. FE simulations revealed that local plastic deformation was enhanced by hydrogen, and the critical quantitative conditions for quasi-cleavage cracking initiation varied depending on the stress concentration factor.
The present study investigated the hydrogen-related fracture behavior of specimens with different stress concentration factors through microstructure observation, finite element (FE) simulation, and digital image correlation (DIC) analysis. The alloy studied was a simple model alloy (Fe-0.2C binary alloy) with fully martensite structure. When the hydrogen content was large (2.21 mass ppm (121 at ppm)), the crack initiation and propagation occurred along the prior austenite grain boundaries. Through the FE simulations, we found that the crack initiation sites corresponded to the region with high stress and high hydrogen content. Although the stress concentration factors were different, the stress level and the hydrogen content at the crack initiation sites were almost the same, indicating that the hydrogen-related intergranular fracture originated from stress-controlled decohesion at the prior austenite grain boundaries. For the specimen with small hydrogen content (0.41 mass ppm (22.5 at ppm)), the quasi-cleavage cracks formed at the surface of the notch root and propagated along the {011} planes. The FE simulations revealed that the plastic strains were maximum at the initiation sites of the quasi-cleavage cracks. Moreover, we confirmed that hydrogen enhanced the local plastic deformation by DIC analysis. As the local values of maximum principal stress, plastic strain, and hydrogen content at the initiation sites of the quasi-cleavage cracks were different depending on the stress concentration factor, the critical quantitative condition for the initiation of quasi-cleavage cracking was not simple compared to that of the case of intergranular cracking. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据