4.8 Article

Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery

期刊

ACTA BIOMATERIALIA
卷 128, 期 -, 页码 474-485

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2021.04.011

关键词

CaCO3 nanorod; Hydrogel nanocapsule; Shape switching; Stiffness adjustable; Hierarchical targeting

资金

  1. National Natural Science Foundation of China [31771034, 32071394]

向作者/读者索取更多资源

The study highlights the significance of shape and stiffness in designing nanocarriers for drug delivery, with different factors affecting blood circulation, tumor tissue accumulation, cellular internalization, and drug accumulation. Shape-shiftable nanocarriers show promising potential in addressing multiple delivery barriers for chemotherapeutic agents.
Geometry and mechanical property have emerged as important parameters in designing nanocarriers, in addition to their size, surface charge, and hydrophilicity. However, inconsistent and even contradictory demands regarding the shape and stiffness of nanoparticles have been noted in blood circulation, tumor accumulation, and tumor cell internalization. Herein, CaCO3 nanorods (NRs) with an aspect ratio of around 2.4 are assembled with hyaluronic acid (HA) hydrogel layers to prepare CaCO3@HA NRs. The rod geometry enables lower recognition by macrophages and higher extravasation into tumor tissues than the spherical counterpart. In response to the slightly acidic tumor matrix, the acid-labile removal of CaCO3 templates achieves shape switching into spherical HA nanocapsules (NCs). The shape switchable CaCO3@HA NRs show significantly higher uptake and cytotoxicities to 4T1 cells than CaCO3-Si@HA NRs with silica layers on CaCO3 cores to inhibit shape switching. In addition, HA NCs with 2 - 8 layers of HA hydrogels exhibit stiffness from 1.85 to 12.3 N/m, and the assembly of 4 layers shows 2- to 3-fold higher cellular uptake than those of other NCs. The shape shift satisfies long-term blood circulation of NRs, and the resulting stiffness-adjustable NCs promote tissue infiltration and intracellular accommodation, resulting in a 4-fold higher drug accumulation in tumors. The CaCO3@HA NR treatment significantly suppresses tumor growth; prolongs animal survival; inhibits lung metastasis; and eliminates systemic toxicities to blood, liver, kidney, and heart tissues. This study achieves a comprehensive understanding of the shape and stiffness effects and demonstrates a hierarchical targeting strategy to address the multiple delivery barriers for chemotherapeutic agents. Statement of significance The different barriers involved in the drug delivery pathway have inconsistent and even contradictory demands on the shape and stiffness of nanoparticles. In the current study, in situ switching of nanorods (NRs) into spherical nanocapsules (NCs) in tumor tissues is proposed to address these dilemmas. The NR shape ensures long-term blood circulation and high tumor tissue accumulation, while the in situ switching into NCs promotes tissue infiltration and cellular internalization. NCs with different numbers of hydrogel layers also provide a robust system wherein NC stiffness is controlled as a single variable to study stiffness-dependent cellular behaviors. Thus, this straightforward design offers a comprehensive understanding of how the shape and stiffness of nanocarriers affect their biological pathways. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据