4.8 Article

Smart Strategy: Transparent Hole-Transporting Polymer as a Regulator to Optimize Photomultiplication-type Polymer Photodetectors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 18, 页码 21565-21572

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c06486

关键词

photomultiplication; polymer photodetector; trapped electron; hole tunneling injection; optical-field distribution

资金

  1. National Natural Science Foundation of China [62075155]
  2. Beijing Natural Science Foundation [4192049]
  3. Guangxi Natural Science Foundation Program [2019GXNSFGA245005, 2020ZYZX2005]

向作者/读者索取更多资源

The study utilized conjugated polymer and transparent polymer to fabricate photomultiplication-type polymer photodetectors, with the transparent polymer acting as a regulator in the active layers to improve EQE and response speed, resulting in enhanced performance of the PM-PPDs.
Photomultiplication-type polymer photodetectors (PM-PPDs) were fabricated with hole-only transport active layers containing polymer(s): [6,6]-phenylC61-butyric acid methyl ester (PC61BM) with a weight ratio of 100:2. The rather less PC61BM content in active layers prefers to generate a large amount of isolated electron traps surrounded by polymers. Photogenerated electrons prefer to be trapped by the isolated PC61BM due to the lack of continuous electron-transport channels. The trapped electrons by the isolated PC61BM close to the Al electrode would like to seduce hole tunneling injection. The transparent polymer poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] (poly-TPD) was incorporated as a regulator to improve hole mobility (mu(h)) and adjust the trapped-electron distribution in active layers, leading to the enhanced performance of PM-PPDs. The optimal PM-PPDs were achieved using poly(3-hexylthiophene) (P3HT):poly-TPD:PC61BM (80:20:2, wt/wt/wt) as active layers. External quantum efficiency (EQE) values at 620 nm are 3900 and 1250% for PM-PPDs based on P3HT:poly-TPD:PC61BM (80:20:2, wt/wt/wt) and P3HT:PC61BM (100:2, wt/wt) under -10 V applied voltage, respectively. The EQE at 620 nm of optimal PM-PPDs is improved from 650 to 63,000% along with the applied voltage increase from -5 to -20 V. This work provides a new strategy of using transparent polymer with large mu(h) as a regulator for EQE and response speed improvement, as well as the flattened EQE spectral shape of PM-PPDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据