4.8 Article

Toward a High-Energy-Density Cathode with Enhanced Temperature Adaptability for Sodium-Ion Batteries: A Case Study of Na3MnZr(PO4)3 Microspheres with Embedded Dual-Carbon Networks

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 18, 页码 21390-21400

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c03642

关键词

Na3MnZr(PO4)(3); dual carbon; temperature adaptability; electrochemical performance; sodium-ion batteries

资金

  1. National Natural Science Foundation of China [21603040]
  2. Natural Science Foundation of Guangxi [2017GXNSFAA198338]
  3. Key Research and Development Program of Guangxi [AB19110024]

向作者/读者索取更多资源

A scalable spray-drying strategy was proposed to construct interconnected conductive networks in microspheres, which showed excellent rate performance and long-term cycling stability in a wide temperature range for sodium-ion batteries.
Polyanionic cathode materials that have high energy density and good temperature adaptability are in high demand for practical applications in sodium-ion batteries (SIBs). In this study, a scalable spray-drying strategy has been proposed to construct interconnected conductive networks composed of amorphous carbon and reduced graphene oxide in Na3MnZr(PO4)(3) microspheres (NMZP@C-rGO). The dual-carbon conductive networks provide fast electron migration pathways in the microspheres. Moreover, they significantly increase the porosity and specific surface area of the microspheres, which are conducive to accommodating the volume change and improving the electrode/electrolyte contact interface and the contribution of the pseudocapacitance effect to achieve fast sodium storage. As a result, NMZP@C-rGO exhibits excellent rate performance (50.9 mAh g(-1) at 50C and 30 degrees C, 35.4 mAh g(-1) at 50C and -15 degrees C) and long-term cycling stability (capacity retentions of 97.4 and 79.6% after 1500 cycles at 30 and -15 degrees C, respectively) in a wide temperature range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据