4.8 Article

3D Printed Nickel-Molybdenum-Based Electrocatalysts for Hydrogen Evolution at Low Overpotentials in a Flow-Through Configuration

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 17, 页码 20260-20268

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c05648

关键词

hydrogen evolution reaction; electrocatalysis; 3D printing; alkaline electrolysis; NiMo; flow-through; electrochemistry; solar fuel

资金

  1. US Department of Energy [DE-AC52-07NA27344]
  2. LDRD Awards [19-SI-005, 19-FS-047]
  3. IM review [LLNL-JRNL-816169]
  4. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub [DE-SC0021266]

向作者/读者索取更多资源

Three-dimensionally printed nickel molybdenum electrocatalysts with hierarchically porous structures were synthesized and evaluated for hydrogen evolution reaction in a flow-through configuration, showing efficient bubble removal and decreased overpotentials. An analytical model was developed to quantitatively evaluate voltage losses, while the electrochemical performance was systematically studied, achieving high electrochemical accessible surface areas and low overpotentials using the flow-through configuration.
Three-dimensional (3D) printed, hierarchically porous nickel molybdenum (NiMo) electrocatalysts were synthesized and evaluated in a flow-through configuration for the hydrogen evolution reaction (HER) in 1.0 M KOH(aq) in a simple electrochemical H-cell. 3D NiMo electrodes possess hierarchically porous structures because of the resol-based aerogel precursor, which generates superporous carbon aerogel as a catalyst support. Relative to a traditional planar electrode configuration, the flow-through configuration allowed efficient removal of the hydrogen bubbles from the catalyst surface, especially at high operating current densities, and significantly decreased the overpotentials required for HER. An analytical model that accounted for the electrokinetics of HER as well as the mass transport with or without the flow-through configuration was developed to quantitatively evaluate voltage losses associated with kinetic overpotentials and ohmic resistance due to bubble formation in the porous electrodes. The chemical composition, electrochemical surface area (ECSA), and roughness factor (RF) were also systematically studied to assess the electrocatalytic performance of the 3D printed, hierarchically porous NiMo electrodes. An ECSA of 25163 cm(2) was obtained with the highly porous structures, and an average overpotential of 45 mV at 10 mA cm(-2) was achieved over 24 h by using the flow-through configuration. The flow-through configuration evaluated in the simple H-cell achieved high electrochemical accessible surface areas for electrochemical reactions and provided useful information for adaption of the porous electrodes in flow cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据