4.8 Article

Metallic-State MoS2 Nanosheets with Atomic Modification for Sodium Ion Batteries with a High Rate Capability and Long Lifespan

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 17, 页码 19894-19903

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c22905

关键词

MoS2; atomic modification; metallic state; sodium ion battery; high rate

资金

  1. National Natural Science Foundation of China [51772086, 51572078, 51872087]
  2. Fundamental Research Funds for the Central Universities [N2025018, N2025009]

向作者/读者索取更多资源

Exploring active materials with high rate capability and long lifespan for sodium ion batteries is crucial for clean energy storage. Optimizing electronic structure to enhance electronic conductivity and improving electrochemical performance for sodium storage. Using a hierarchical mesopore carbon matrix to prevent nano-sheet stacking and optimize electrode performance.
Exploring active materials with a high rate capability and long lifespan for sodium ion batteries attracts much more attention and plays an important role in realizing clean energy storage and conversion. The strategy of optimizing the electronic structure by atomic element substitution within MoS2 layers was employed to change the inherent physical property. The enhanced electronic conductivity from a decreased bandgap and increased surface Na+ adsorption energy can efficiently and dramatically optimize the electrochemical performance for sodium storage. Attempting to limit the large volume variation and avoid MoS2 nanosheet stacking and restacking, numerous nanosheets are in situ grown into a designed hierarchical mesopore carbon matrix. This structure can tightly capture the nanosheets to prevent them from aggregating and offer a sufficient buffer zone for alleviating severe volume changes during the discharging/charging process, contributing remarkably to the structural integrity and superior rate performance of electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据