4.8 Article

Impact of Protonation on the Electrochemical Performance of Li7La3Zr2O12 Garnets

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 12, 页码 14713-14722

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c23144

关键词

LLZO protonation; solvents impact; surface conditioning; impedance spectroscopy; all-solid-state batteries

资金

  1. [31236.1 IP-EE]

向作者/读者索取更多资源

LLZO garnet ceramics are promising electrolytes for high energy density all-solid-state lithium-metal batteries, but they are prone to protonation, leading to degradation of Li-ion conductivity. Common processing steps trigger LLZO partial protonation, affecting the performance of the batteries.
Li7La3Zr2O12 (LLZO) garnet ceramics are promising electrolytes for all-solid-state lithium-metal batteries with high energy density. However, these electrolytes are prone to Li+/H+ exchange, that is, protonation, resulting in degradation of their Li-ion conductivity. Here, we identify how common processing steps, such as surface cleaning in alcohol or acetone, trigger LLZO partial protonation. We deconvolute the contributions to the electrochemical impedance spectra of both the protonated LLZO phase (HLLZO) and its decomposition products forming upon annealing. While the mixed conduction of H+/Li+ ions in HLLZO decreases the contribution of the electrolyte to the overall impedance, it deteriorates the transport of Li+ ions across the LLZO/Li interface. This is also the case after thermal decomposition of HLLZO, which occurs at significantly lower temperature than that for pristine LLZO. As a result, symmetric Li/LLZO/Li cells suffer from inhomogeneous lithium electrodeposition within the first three cycles when stripping and plating a capacity of 1 mA.h/cm(2) per half-cycle at 0.1 mA/cm(2). We demonstrate that LLZO protonation is avoided when applying solvents with very low acidity, such as hexane. Such Li/LLZO/Li cells provide stable cycling over more than 300 h, demonstrating the importance of selecting an appropriate solvent for LLZO processing to prevent dendrites formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据