4.8 Article

A Three-Dimensional Branched TiO2 Photoanode with an Ultrathin Al2O3 Passivation Layer and a NiOOH Cocatalyst toward Photoelectrochemical Water Oxidation

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 11, 页码 13301-13310

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c00948

关键词

photoelectrochemical water oxidation; 3D branched structure; TiO2; NiOOH; contact interface

资金

  1. National Natural Science Foundation of China [51702025, 51874050]
  2. Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP)
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  4. Qinglan Project Foundation of Jiangsu Province

向作者/读者索取更多资源

A novel strategy was developed to construct a 3D branched TiO2 photoanode with an ultrathin Al2O3 passivation layer and NiOOH cocatalyst for photoelectrochemical water splitting, showing improved light absorption ability and enhanced stability.
Photoelectrochemical (PEC) water splitting provides an alternative strategy for clean and renewable hydrogen production; however, the practical application is severely limited by the low solar conversion. Herein, a novel and simple strategy has been developed to construct a 3D branched TiO2 photoanode with an ultrathin Al2O3 passivation layer and NiOOH cocatalyst. The structure and properties of the as-obtained photoanodes are explored by X-ray diffraction, Mott-Schottky, electrochemical impedance spectroscopy, and open circuit voltage measurements. The as-obtained BTiO2/Al2O3/NiOOH ternary heterojunction with a high-quality contact interface exhibits improved light absorption ability, an enhanced photocurrent density of 1.42 mA/cm(2) at 1.23 V-RHE, high conversion efficiency (0.44% at 0.80 V-RHE), and excellent stability compared to pristine TiO2 and alone-Al2O3 or NiOOH decorated TiO2 photoanodes. Therefore, this work could offer a new approach to designing and fabricating high-quality contact interfaces between photoelectrodes and various cocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据