4.8 Review

Biomimetic Dearomatization Strategies in the Total Synthesis of Meroterpenoid Natural Products

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 54, 期 8, 页码 1843-1855

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.1c00019

关键词

-

资金

  1. Australian Research Council

向作者/读者索取更多资源

Natural products are biosynthesized using a limited pool of starting materials, while biomimetic total synthesis attempts to replicate predisposed pathways using chemical reagents. By avoiding the use of protecting groups, researchers aim to explore the innate reactivity of biosynthetic intermediates. Biomimetic synthesis is often concise and efficient, following atom, step, and redox economies of synthesis.
CONSPECTUS: Natural products are biosynthesized from a limited pool of starting materials via pathways that obey the same chemical logic as textbook organic reactions. Given the structure of a natural product, it is therefore often possible to predict its likely biosynthesis. Although biosynthesis mainly occurs in the highly specific chemical environments of enzymes, the field of biomimetic total synthesis attempts to replicate predisposed pathways using chemical reagents. We have followed several guidelines in our biomimetic approach to total synthesis. The overarching aim is to construct the same skeletal C-C and C-heteroatom bonds and in the same order as our biosynthetic hypothesis. In order to explore the innate reactivity of (bio)synthetic intermediates, the use of protecting groups is avoided or at least minimized. The key step, which is usually a cascade reaction, should be predisposed to selectively generate molecular complexity under substrate control (e.g., cycloadditions, radical cyclizations, carbocation rearrangements). In general, simple reagents and mild conditions are used; many of the total syntheses presented in this Account could be achieved using pre-1980s methodology. We have focused almost exclusively on the synthesis of meroterpenoids, that is, natural products of mixed terpene and aromatic polyketide origin, using commercially available terpenes and electron-rich aromatic compounds as starting materials. Finally, all of the syntheses in this Account involve a dearomatization step as a means to trigger a cascade reaction or to construct stereochemical complexity from a planar, aromatic intermediate. A biomimetic strategy can offer several advantages to a total synthesis project. Most obviously, successful biomimetic syntheses are usually concise and efficient, naturally adhering to the atom, step, and redox economies of synthesis. For example, in this Account, we describe a four-step synthesis of garcibracteatone and a three-step synthesis of nyingchinoid A. It is difficult to imagine shorter, non-biomimetic syntheses of these intricate molecules. Furthermore, biomimetic synthesis gives insight into biosynthesis by revealing the chemical relationships between biosynthetic intermediates. Access to these natural substrates allows collaboration with biochemists to help uncover the function of newly discovered enzymes and elucidate biosynthetic pathways, as demonstrated in our work on the napyradiomycin family. Third, by making biosynthetic connections between natural products, we can sometimes highlight incorrect structural assignments, and herein we discuss structure revisions of siphonodictyal B, rasumatranin D, and furoerioaustralasine. Last, biomimetic synthesis motivates the prediction of undiscovered natural products (i.e., missing links in biosynthesis), which inspired the isolation of prenylbruceol A and isobruceol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据