4.6 Article

On the Optimization of a Multimodal Electromagnetic Vibration Energy Harvester Using Mode Localization and Nonlinear Dynamics

期刊

ACTUATORS
卷 10, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/act10020025

关键词

electromagnetic vibration energy harvester; multimodal structure; energy localization; nonlinear dynamics; multiobjective optimization

资金

  1. EUR EIPHI program [ANR 17-EURE-0002]

向作者/读者索取更多资源

This paper studies a generic model of a nonlinear quasiperiodic vibration energy harvester based on electromagnetic transduction. A validated 2-DOFs harvester is optimized to significantly improve harvested power and frequency bandwidth. The results show that using a 5-DOFs VEH with two perturbed DOFs oscillators can effectively increase harvested power and frequency bandwidth.
In this paper we study a generic model of a nonlinear quasiperiodic vibration energy harvester (VEH) based on electromagnetic transduction. The proposed device consists of multiple moving magnets guided by elastic beams and coupled by repulsive magnetic forces. A system of two degrees-of-freedom (DOFs) with tunable nonlinearity and mode localization is experimentally validated. The validated 2-DOFs harvester is optimized using a multiobjective optimization procedure to improve its harvested power and frequency bandwidth. An efficient criterion using the modal kinetic energy of the finite element model is proposed to quantify the energy localized in the structure perturbed zones. Afterward, this concept has been generalized to a 5-DOFs VEH with two perturbed DOFs oscillators and the optimal performances are derived using a multiobjective optimization. This proposed model enables a significant increase in the harvested power and frequency bandwidth by 101% and 79%, respectively, compared to that of the 2-DOFs device. Moreover, it has been shown that harvesting energy from two perturbed magnets among five provides almost the same amount of harvested energy and enhances the frequency bandwidth by 18% compared to those of the periodic system. Consequently, the harvester can be improved by reducing the transduction circuits number and the manufacturing cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据