4.6 Article

Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing

期刊

PEERJ COMPUTER SCIENCE
卷 7, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj-cs.352

关键词

Cassava disease; Pattern recognition; Image processing; Deep learning; Convolutional neural networks; Distinct block processing; Data augmentation

向作者/读者索取更多资源

The article introduces a novel deep residual convolution neural network (DRNN) for detecting CMD in cassava leaf images, balancing the dataset through block processing to improve classification accuracy compared to a plain convolutional neural network (PCNN) by 9.25% on the Cassava Disease Dataset from Kaggle.
For people in developing countries, cassava is a major source of calories and carbohydrates. However, Cassava Mosaic Disease (CMD) has become a major cause of concern among farmers in sub-Saharan Africa countries, which rely on cassava for both business and local consumption. The article proposes a novel deep residual convolution neural network (DRNN) for CMD detection in cassava leaf images. With the aid of distinct block processing, we can counterbalance the imbalanced image dataset of the cassava diseases and increase the number of images available for training and testing. Moreover, we adjust low contrast using Gamma correction and decorrelation stretching to enhance the color separation of an image with significant band-to-band correlation. Experimental results demonstrate that using a balanced dataset of images increases the accuracy of classification. The proposed DRNN model outperforms the plain convolutional neural network (PCNN) by a significant margin of 9.25% on the Cassava Disease Dataset from Kaggle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据