4.6 Article

Application and evaluation of knowledge graph embeddings in biomedical data

期刊

PEERJ COMPUTER SCIENCE
卷 -, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj-cs.341

关键词

Knowledge graphs; Embeddings methods; Biomedicine; Comparative evaluation; Performance studies; Linked data; Bio-ontologies

资金

  1. Jubail University College (JUC) in Saudi Arabia
  2. KAUST Office of Sponsored Research (OSR) [FCC/1/1976-17-01]

向作者/读者索取更多资源

Linked data and bio-ontologies are essential for maintaining data integrity and enhancing search capabilities in biological and biomedical databases, while knowledge graphs have been increasingly employed for information representation. Embedding methods in knowledge graphs can predict entity relationships, improving prediction accuracy in machine learning models and decision support systems.
Linked data and bio-ontologies enabling knowledge representation, standardization, and dissemination are an integral part of developing biological and biomedical databases. That is, linked data and bio-ontologies are employed in databases to maintain data integrity, data organization, and to empower search capabilities. However, linked data and bio-ontologies are more recently being used to represent information as multi-relational heterogeneous graphs, knowledge graphs. The reason being, entities and relations in the knowledge graph can be represented as embedding vectors in semantic space, and these embedding vectors have been used to predict relationships between entities. Such knowledge graph embedding methods provide a practical approach to data analytics and increase chances of building machine learning models with high prediction accuracy that can enhance decision support systems. Here, we present a comparative assessment and a standard benchmark for knowledge graph-based representation learning methods focused on the link prediction task for biological relations. We systematically investigated and compared state-of-the-art embedding methods based on the design settings used for training and evaluation. We further tested various strategies aimed at controlling the amount of information related to each relation in the knowledge graph and its effects on the final performance. We also assessed the quality of the knowledge graph features through clustering and visualization and employed several evaluation metrics to examine their uses and differences. Based on this systematic comparison and assessments, we identify and discuss the limitations of knowledge graph-based representation learning methods and suggest some guidelines for the development of more improved methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据