4.7 Article

MAGIs regulate aPKC to enable balanced distribution of intercellular tension for epithelial sheet homeostasis

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s42003-021-01874-z

关键词

-

资金

  1. MEXT/JSPS KAKENHI [JP19H04968, JP19H03227, JP19K06640, JP24112513, JP26460253]
  2. AMED-PRIME [15664862]
  3. MSD Life Science Foundation
  4. Sumitomo Foundation

向作者/读者索取更多资源

The study demonstrates that MAGI proteins regulate apical constriction of epithelial cells by modulating the distribution of Par polarity proteins, thereby maintaining steady state intercellular tension throughout the epithelial cell sheet.
Constriction of the apical plasma membrane is a hallmark of epithelial cells that underlies cell shape changes in tissue morphogenesis and maintenance of tissue integrity in homeostasis. Contractile force is exerted by a cortical actomyosin network that is anchored to the plasma membrane by the apical junctional complexes (AJC). In this study, we present evidence that MAGI proteins, structural components of AJC whose function remained unclear, regulate apical constriction of epithelial cells through the Par polarity proteins. We reveal that MAGIs are required to uniformly distribute Partitioning defective-3 (Par-3) at AJC of cells throughout the epithelial monolayer. MAGIs recruit ankyrin-repeat-, SH3-domain- and proline-rich-region-containing protein 2 (ASPP2) to AJC, which modulates Par-3-aPKC to antagonize ROCK-driven contractility. By coupling the adhesion machinery to the polarity proteins to regulate cellular contractility, we propose that MAGIs play essential and central roles in maintaining steady state intercellular tension throughout the epithelial cell sheet. Matsuzawa et al. show that adhesion-related molecules MAGI-1 and MAGI-3 localize partitioning defective-3 (Par-3) at apical junctional complexes of cells throughout the epithelial monolayer. This study provides insights into how tension distribution contributes to cellular contractility in epithelial tissue homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据