4.7 Article

CYK4 relaxes the bias in the off-axis motion by MKLP1 kinesin-6

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s42003-021-01704-2

关键词

-

资金

  1. JSPS KAKENHI [JP19H03190, JP20K06635]
  2. MEXT KAKENHI [JP19H05357, JP19H05378]
  3. Cancer Research UK [C19769/A11985]

向作者/读者索取更多资源

The complex of MKLP1 kinesin-6 and CYK4 GAP subunits, known as centralspindlin, plays a key role in metazoan cytokinesis. While dimeric MKLP1 drives persistent left-handed helical motion around microtubules, CYK4-binding enables more flexible off-axis movement, helping to avoid obstacles in crowded spindle microtubules.
Centralspindlin, a complex of the MKLP1 kinesin-6 and CYK4 GAP subunits, plays key roles in metazoan cytokinesis. CYK4-binding to the long neck region of MKLP1 restricts the configuration of the two MKLP1 motor domains in the centralspindlin. However, it is unclear how the CYK4-binding modulates the interaction of MKLP1 with a microtubule. Here, we performed three-dimensional nanometry of a microbead coated with multiple MKLP1 molecules on a freely suspended microtubule. We found that beads driven by dimeric MKLP1 exhibited persistently left-handed helical trajectories around the microtubule axis, indicating torque generation. By contrast, centralspindlin, like monomeric MKLP1, showed similarly left-handed but less persistent helical movement with occasional rightward movements. Analysis of the fluctuating helical movement indicated that the MKLP1 stochastically makes off-axis motions biased towards the protofilament on the left. CYK4-binding to the neck domains in MKLP1 enables more flexible off-axis motion of centralspindlin, which would help to avoid obstacles along crowded spindle microtubules. Analysing the 3D movement of MKLP1 motors, Maruyama et al. find that dimeric C. elegans MKLP1 drives a left-handed helical motion around the microtubule with minimum protofilament switching to the right side whereas less persistent motions are driven by monomers or by heterotetramers with CYK4. These findings suggest how obstacles along crowded spindle microtubules may be avoided by CYK4 binding to MKLP1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据