4.7 Article

Plexin-B2 facilitates glioblastoma infiltration by modulating cell biomechanics

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-021-01667-4

关键词

-

资金

  1. NIH [R01NS092735, R01NS107462]
  2. NCI Cancer Center [P30CA196521]

向作者/读者索取更多资源

The study demonstrates that glioblastoma cells elevate axon guidance molecule Plexin-B2 to increase invasiveness, and through modulating cellular biomechanics, Plexin-B2 promotes glioblastoma cell infiltration along axon fiber tracts in intracranial transplant models.
Infiltrative growth is a major cause of high lethality of malignant brain tumors such as glioblastoma (GBM). We show here that GBM cells upregulate guidance receptor Plexin-B2 to gain invasiveness. Deletion of Plexin-B2 in GBM stem cells limited tumor spread and shifted invasion paths from axon fiber tracts to perivascular routes. On a cellular level, Plexin-B2 adjusts cell adhesiveness, migratory responses to different matrix stiffness, and actomyosin dynamics, thus empowering GBM cells to leave stiff tumor bulk and infiltrate softer brain parenchyma. Correspondingly, gene signatures affected by Plexin-B2 were associated with locomotor regulation, matrix interactions, and cellular biomechanics. On a molecular level, the intracellular Ras-GAP domain contributed to Plexin-B2 function, while the signaling relationship with downstream effectors Rap1/2 appeared variable between GBM stem cell lines, reflecting intertumoral heterogeneity. Our studies establish Plexin-B2 as a modulator of cell biomechanics that is usurped by GBM cells to gain invasiveness. Huang et al demonstrate that glioblastoma cells upregulate axon guidance molecule Plexin-B2 to gain invasiveness and that Plexin-B2 promotes glioblastoma cell infiltration along axon fiber tracts in intracranial transplant models by modulating cellular biomechanics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据