4.7 Article

Angular-multiplexed multichannel optical vortex arrays generators based on geometric metasurface

期刊

ISCIENCE
卷 24, 期 2, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2021.102107

关键词

-

资金

  1. National Natural Science Funds of China [61822511, 61705234]
  2. Youth Innovation Promotion Association of the Chinese Academy of Sciences

向作者/读者索取更多资源

This paper introduces a novel method utilizing ultrathin geometric metasurface for multichannel optical vortex arrays, demonstrating successful construction in different diffraction regions. The combination of diffraction angle of light and optical vortex array shows significant potential for applications in optical display, free-space optical communication, and optical manipulation.
Recently, metasurface-based multichannel optical vortex arrays have attracted considerable interests due to its promising applications in high-dimensional information storage and high-secure information encryption. In addition to the well-known wavelength and polarization multiplexing technologies, the diffraction angle of light is an alternative typical physical dimension for multichannel optical vortex arrays. In this paper, based on angular multiplexing, we propose and demonstrate multichannel optical vortex arrays by using ultrathin geometric metasurface. For a circularly polarized incident light, the desired optical vortex arrays are successfully constructed in different diffraction regions. Moreover, the diffraction angle of the optical vortex array can be regulated by changing the illumination angle of incident light. Capitalizing on this advantage, the angular-multiplexed recombination of optical vortex array is further investigated. The combination of the diffraction angle of light and optical vortex array may have significant potential in applications of optical display, free-space optical communication, and optical manipulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据